The genetic basis for virulence in influenza virus is largely unknown. To explore the mutational basis for increased virulence in the lung, the H3N2 prototype clinical isolate, A͞HK͞1͞68, was adapted to the mouse. Genomic sequencing provided the first demonstration, to our knowledge, that a group of 11 mutations can convert an avirulent virus to a virulent variant that can kill at a minimal dose. Thirteen of the 14 amino acid substitutions (93%) detected among clonal isolates were likely instrumental in adaptation because of their positive selection, location in functional regions, and͞or independent occurrence in other virulent influenza viruses. Mutations in virulent variants repeatedly involved nuclear localization signals and sites of protein and RNA interaction, implicating them as novel modulators of virulence. Mouse-adapted variants with the same hemagglutinin mutations possessed different pH optima of fusion, indicating that fusion activity of hemagglutinin can be modulated by other viral genes. Experimental adaptation resulted in the selection of three mutations that were in common with the virulent human H5N1 isolate A͞HK͞ 156͞97 and that may be instrumental in its extreme virulence. Analysis of viral adaptation by serial passage appears to provide the identification of biologically relevant mutations.
Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth‐promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence‐related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14′s potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth‐promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth‐promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity‐related genes identified from the genome, but it lacks key virulence‐related gene loci found in the pathogenic strains. Additionally, plant growth‐promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth‐promoting soil‐isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence‐associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14 genome as well as Burkholderia species genome show considerable diversity. Multiple antimicrobial agent biosynthesis genes were identified in the genome of plant growth‐promoting species of Burkholderia. In addition, by comparing to nonpathogenic Burkholderia species, pathogenic Burkholderia species have more characterized homologs of the gene loci known to contribute to pathogenicity and virulence to plant and animals.
A polymerase chain reaction (PCR) based diagnostic assay was used to develop markers for detection of Fusarium verticillioides (=F. moniliforme), a fumonisin producing fungus in maize tissues. Species-specific primers were designed based on sequence data from the polyketide synthase (PKS) gene (FUM1-previously FUM5) responsible for fumonisin production in fungi. Four sets of oligonucleotide primers were tested for their specificity using 24 strains of F. verticillioides, 10 F. proliferatum, and 12 of other Fusarium species. In addition, 13 species of other fungal genera, from four phyla, were tested as negative controls. Among the four sets, primer set B consistently amplified a 419-bp fragment from the DNA 96% of all F. verticillioides strains and 83% of F. proliferatum. All other fungi tested were negative using primer set B. A total of 38% of the F. verticillioides strains grown on a selective liquid medium produced fumonisin and 92% formed the toxin on standard rice medium. When fumonisin formed in culture, PCR assay using primer set B detected every strain of F. verticillioides, but only amplified 80% of F. proliferatum strains that produced the toxin. PCR detection was consistent at 100 pg/µl concentration of genomic DNA from 4 F. verticillioides strains, but varied at 10 pg/µl. Two duplicate greenhouse tests using artificially inoculated maize plants, had greater levels of F. Int. J. Mol. Sci. 2008, 9555 verticillioides detected after re-evaluting using primer set B than from culturing of the tissues. The molecular protocols described in this study requires only 1 day for completion compared to approximately 10 days for cultural work and morphological determination. In conclusion, conventional PCR assay using primer set B provides a sensitive and accurate detection assay that can be used as a primary or secondary confirmation method for identification and occurrence of F. verticillioides within the maize tissues. However, studies using primer set B for fumonisin production determined by strains of F. verticillioides and F. proliferatum will require further verification.
Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated.IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.