There is no universally agreed set of anatomical structures that must be identified on ultrasound for the performance of ultrasound-guided regional anesthesia (UGRA) techniques. This study aimed to produce standardized recommendations for core (minimum) structures to identify during seven basic blocks. An international consensus was sought through a modified Delphi process. A long-list of anatomical structures was refined through serial review by key opinion leaders in UGRA. All rounds were conducted remotely and anonymously to facilitate equal contribution of each participant. Blocks were considered twice in each round: for “orientation scanning” (the dynamic process of acquiring the final view) and for the “block view” (which visualizes the block site and is maintained for needle insertion/injection). Strong recommendations for inclusion were made if ≥75% of participants rated a structure as “definitely include” in any round. Weak recommendations were made if >50% of participants rated a structure as “definitely include” or “probably include” for all rounds (but the criterion for “strong recommendation” was never met). Thirty-six participants (94.7%) completed all rounds. 128 structures were reviewed; a “strong recommendation” is made for 35 structures on orientation scanning and 28 for the block view. A “weak recommendation” is made for 36 and 20 structures, respectively. This study provides recommendations on the core (minimum) set of anatomical structures to identify during ultrasound scanning for seven basic blocks in UGRA. They are intended to support consistent practice, empower non-experts using basic UGRA techniques, and standardize teaching and research.
SummaryCardiac output may be an important determinant of the induction dose of intravenous anaesthetic. Esmolol is known to reduce cardiac output, and we examined its effect on the propofol dose required for induction of anaesthesia. The size of the effect seen with esmolol was compared with midazolam co-induction. Sixty patients were randomly allocated to placebo (saline), esmolol (1mg.kg )1 bolus, followed by an infusion at 250 lg.kg) or midazolam (0.04 mg.kg )1 ) groups. Induction of anaesthesia commenced 3 min following the administration of the study drug, using a Diprifusor set to achieve plasma propofol concentrations of 10 lg.mlat 5 min. The primary end point used was the propofol dose per kg at loss of response to command. The mean (SD) propofol dose for each group was 2.38 (0.48) mg.kg )1 for placebo,
Recent recommendations describe a set of core anatomical structures to identify on ultrasound for the performance of basic blocks in ultrasound-guided regional anesthesia (UGRA). This project aimed to generate consensus recommendations for core structures to identify during the performance of intermediate and advanced blocks. An initial longlist of structures was refined by an international panel of key opinion leaders in UGRA over a three-round Delphi process. All rounds were conducted virtually and anonymously. Blocks were considered twice in each round: for “orientation scanning” (the dynamic process of acquiring the final view) and for “block view” (which visualizes the block site and is maintained for needle insertion/injection). A “strong recommendation” was made if ≥75% of participants rated any structure as “definitely include” in any round. A “weak recommendation” was made if >50% of participants rated it as “definitely include” or “probably include” for all rounds, but the criterion for strong recommendation was never met. Structures which did not meet either criterion were excluded. Forty-one participants were invited and 40 accepted; 38 completed all three rounds. Participants considered the ultrasound scanning for 19 peripheral nerve blocks across all three rounds. Two hundred and seventy-four structures were reviewed for both orientation scanning and block view; a “strong recommendation” was made for 60 structures on orientation scanning and 44 on the block view. A “weak recommendation” was made for 107 and 62 structures, respectively. These recommendations are intended to help standardize teaching and research in UGRA and support widespread and consistent practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.