Human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. In the present study, we analyzed the roles of focal adhesion kinase (Fak)/Src signaling to the PI3-K/Akt-1 and mitogen-activated protein kinase (MEK)/extracellular regulated kinases (Erk) pathways, within the context of such differentiation-state distinctions. Anoikis was induced by inhibition of beta1 integrins (antibody blocking), inhibition of Fak (pharmacologic inhibition or overexpression of dominant negative mutants), or by maintaining cells in suspension. Activation parameters of Fak, Src, Akt-1, and Erk1/2 were analyzed. Activities of Src, Akt-1, or Erk1/2 were also blocked by pharmacological inhibition or by overexpression of dominant-negative mutants. We report that: (1) the loss or inhibition of beta1 integrin binding activity causes anoikis and results in a down-activation of Fak, Src, Akt-1, and Erk1/2 in both undifferentiated, and differentiated cells; (2) the inhibition of Fak likewise causes anoikis and a down-activation of Src, Akt-1, and Erk1/2, regardless of the differentiation state; (3) Src, PI3-K/Akt-1, and MEK/Erk contribute to the survival of differentiated cells, whereas MEK/Erk does not play a role in the survival of undifferentiated ones; (4) the inhibition/loss of beta1 integrin binding and/or Fak activity results in a loss of Src engagement with Fak, regardless of the state of differentiation; and (5) Src contributes to the activation of both the PI3-K/Akt-1 and MEK/Erk pathways in undifferentiated cells, but does not influence PI3-K/Akt-1 in differentiated ones. Hence, Fak/Src signaling to the PI3-K/Akt-1 and MEK/Erk pathways undergoes a differentiation state-specific uncoupling which ultimately reflects upon the selective engagement of these same pathways in the mediation of intestinal epithelial cell survival.
The molecular determinants which dictate survival and apoptosis/anoikis in human intestinal crypt cells remain to be fully understood. To this effect, the roles of beta1 integrin/Fak/Src signaling to the PI3-K/Akt-1, MEK/Erk, and p38 pathways, were investigated. The regulation of six Bcl-2 homologs (Bcl-2, Mcl-1, Bcl-X(L), Bax, Bak, Bad) was likewise analyzed. We report that: (1) Anoikis causes a down-activation of Fak, Src, Akt-1 and Erk1/2, a loss of Fak-Src association, and a sustained/enhanced activation of p38beta, which is required as apoptosis/anoikis driver; (2) PI3-K/Akt-1 up-regulates the expression of Bcl-X(L) and Mcl-1, down-regulates Bax and Bak, drives Bad phosphorylation (both serine112/136 residues) and antagonizes p38beta activation; (3) MEK/Erk up-regulates Bcl-2, drives Bad phosphorylation (serine112 residue), but does not antagonize p38bactivation; (4) PI3-K/Akt-1 is required for survival, whereas MEK/Erk is not; (5) Src acts as a cornerstone in the engagement of both pathways by beta1 integrins/Fak, and is crucial for survival; and (6) beta1 integrins/Fak and/or Src regulate Bcl-2 homologs as both PI3-K/Atk-1 and MEK/Erk combined. Hence, beta1 integrin/Fak/Src signaling translates into integrated mediating functions of p38beta activation and regulation of Bcl-2 homologs by PI3-K/Akt-1 and MEK/Erk, consequently determining their requirement (or not) for survival.
Herein, we investigated the survival roles of Fak, Src, MEK/Erk, and PI3-K/Akt-1 in intestinal epithelial cancer cells (HCT116, HT29, and T84), in comparison to undifferentiated and differentiated intestinal epithelial cells (IECs). We report that: (1) cancer cells display striking anoikis resistance, as opposed to undifferentiated/differentiated IECs; (2) under anoikis conditions and consequent Fak down-activation, cancer cells nevertheless exhibit sustained Fak-Src interactions and Src/MEK/Erk activation, unlike undifferentiated/differentiated IECs; however, HCT116 and HT29 cells exhibit a PI3-K/Akt-1 down-activation, as undifferentiated/differentiated IECs, whereas T84 cells do not; (3) cancer cells require MEK/Erk for survival, as differentiated (but not undifferentiated) IECs; however, T84 cells do not require Fak and HCT116 cells do not require PI3-K/Akt-1, in contrast to the other cells studied; (4) Src acts as a cornerstone in Fak-mediated signaling to MEK/Erk and PI3-K/Akt-1 in T84 cells, as in undifferentiated IECs, whereas PI3-K/Akt-1 is Src-independent in HCT116, HT29 cells, as in differentiated IECs; and (5) EGFR activity inhibition abrogates anoikis resistance in cancer cells through a loss of Fak-Src interactions and down-activation of Src/MEK/Erk (T84, HCT116, HT29 cells) and PI3-K/Akt-1 (T84 cells). Hence, despite distinctions in signaling behavior not necessarily related to undifferentiated or differentiated IECs, intestinal epithelial cancer cells commonly display an EGFR-mediated sustained activation of Src under anoikis conditions. Furthermore, such sustained Src activation confers anoikis resistance at least in part through a consequent sustenance of Fak-Src interactions and MEK/Erk activation, thus not only overriding Fak-mediated signaling to MEK/Erk and/or PI3-K/Akt-1, but also the requirement of Fak and/or PI3-K/Akt-1 for survival.
In human intestinal epithelial crypt (HIEC) cells, the PI3-K/Akt-1 pathway is crucial for the promotion of cell survival and suppression of anoikis. Class I PI3-K consists of a complex formed by a catalytic (C) and regulatory (R) subunit. Three R (p85α, β, and p55γ) and four C (p110α, β, γ and δ) isoforms are known. Herein, we analyzed the expression of PI3-K isoforms in HIEC cells and determined their roles in cell survival, as well as in the β1 integrin/Fak/Src-mediated suppression of anoikis. We report that: (1) the predominant PI3-K complexes expressed by HIEC cells are p110α/p85β and p110α/p55γ; (2) the inhibition and/or siRNA-mediated expression silencing of p110α, but not that of p110β, γ or δ, results in Akt-1 down-activation and consequent apoptosis; (3) the expression silencing of p85β or p55γ, but not that of p85α, likewise induces Akt-1 down-activation and apoptosis; however, the impact of a loss of p55γ on both Akt-1 activation and cell survival is significantly greater than that from the loss of p85β; and (4) both the p110α/p85β and p110α/p55γ complexes are engaged by β1 integrin/Fak/Src signaling; however, the engagement of p110α/p85β is primarily Src-dependent, whereas that of p110α/p55γ is primarily Fak-dependent (but Src-independent). Hence, HIEC cells selectively express PI3-K isoform complexes, translating into distinct roles in Akt-1 activation and cell survival, as well as in a selective engagement by Fak and/or Src within the context of β1 integrin/Fak/Src-mediated suppression of anoikis.
BackgroundRegulation of anoikis in human intestinal epithelial cells (IECs) implicates differentiation state-specific mechanisms. Human IECs express distinct repertoires of integrins according to their state of differentiation. Therefore, we investigated whether α2β1, α3β1, α5β1, and α6β4 integrins perform differentiation state-specific roles in the suppression of IEC anoikis.ResultsHuman (HIEC, Caco-2/15) IECs were exposed to specific antibodies that block the binding activity of integrin subunits (α2, α3, α5, α6, β1 or β4) to verify whether or not their inhibition induced anoikis. The knockdown of α6 was also performed by shRNA. Additionally, apoptosis/anoikis was induced by pharmacological inhibition of Fak (PF573228) or Src (PP2). Anoikis/apoptosis was assayed by DNA laddering, ISEL, and/or caspase activity (CASP-8, -9, or -3). Activation levels of Fak and Src, as well as functional Fak-Src interactions, were also assessed. We report herein that differentiated IECs exhibit a greater sensitivity to anoikis than undifferentiated ones. This involves an earlier onset of anoikis when kept in suspension, as well as significantly greater contributions from β1 and β4 integrins in the suppression of anoikis in differentiated cells, and functional distinctions between β1 and β4 integrins in engaging both Fak and Src, or Src only, respectively. Likewise, Fak performs significantly greater contributions in the suppression of anoikis in differentiated cells. Additionally, we show that α2β1 and α5β1 suppress anoikis in undifferentiated cells, whereas α3β1 does so in differentiated ones. Furthermore, we provide evidence that α6β4 contributes to the suppression of anoikis in a primarily α6 subunit-dependent manner in undifferentiated cells, whereas this same integrin in differentiated cells performs significantly greater contributions in anoikis suppression than its undifferentiated state-counterpart, in addition to doing so through a dependence on both of its subunits.ConclusionsOur findings indicate that the suppression of human IEC anoikis implicates differentiation state-selective repertoires of integrins, which in turn results into distinctions in anoikis regulation, and sensitivity, between undifferentiated and differentiated IECs. These data further the functional understanding of the concept that the suppression of anoikis is subjected to cell differentiation state-selective mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.