Abdominal aortic aneurysms (AAAs) are a life-threatening disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by macrophage infiltration, and the mechanisms regulating macrophage-mediated inflammation remain undefined. Recent evidence suggests that an epigenetic enzyme, JMJD3, plays a critical role in establishing macrophage phenotype. Using single-cell RNA sequencing of human AAA tissues, we identified increased JMJD3 in aortic monocyte/macrophages resulting in up-regulation of an inflammatory immune response. Mechanistically, we report that interferon-β regulates Jmjd3 expression via JAK/STAT and that JMJD3 induces NF-κB–mediated inflammatory gene transcription in infiltrating aortic macrophages. In vivo targeted inhibition of JMJD3 with myeloid-specific genetic depletion (JMJD3f/fLyz2Cre+) or pharmacological inhibition in the elastase or angiotensin II–induced AAA model preserved the repressive H3K27me3 on inflammatory gene promoters and markedly reduced AAA expansion and attenuated macrophage-mediated inflammation. Together, our findings suggest that cell-specific pharmacologic therapy targeting JMJD3 may be an effective intervention for AAA expansion.
Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber’s congenital amaurosis. In addition to rAAV’s high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package “large” genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6–8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6–8, 2010; Duan et al., J Virol 73(1):161–169, 1999; Duan et al., J Virol 72(11):8568–8577, 1998; Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002). This method involves “splitting” the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002; Ghosh et al., Mol Ther 16(1):124–130, 2008; Ghosh et al., Mol Ther 15(4):750–755, 2007). The other major strategy for AAV-mediated large gene delivery is the use of fragment AAV (fAAV) (Dong et al., Mol Ther 18(1):87–92, 2010; Hirsch et al., Mol Ther 21(12):2205–2216, 2013; Lai et al., Mol Ther 18(1):75–79, 2010; Wu et al., Mol Ther 18(1):80–86, 2010). This strategy developed following the observation that the attempted encapsidation of transgenic cassettes exceeding the packaging capacity of the AAV capsid results in the packaging of heterogeneous single-strand genome fragments (<5 kb) of both polarities (Dong et al., Mol Ther 18(1):87–92, 2010; Hirsch et al., Mol Ther 21(12):2205–2216, 2013; Lai et al., Mol Ther 18(1):75–79, 2010; Wu et al., Mol Ther 18(1):80–86, 2010). After transduction by multiple fAAV particles, the genome fragments can undergo opposite strand annealing, followed by host-mediated DNA synthesis to reconstruct the intended oversized genome within the cell. Although, there appears to be growing debate as to the most efficient method of rAAV-mediated large gene delivery, it remains possible that additional factors including the target t...
Macrophages are a primary immune cell involved in inflammation, and their cell plasticity allows for transition from an inflammatory to a reparative phenotype and is critical for normal tissue repair following injury. Evidence suggests that epigenetic alterations play a critical role in establishing macrophage phenotype and function during normal and pathologic wound repair. Here, we find in human and murine wound macrophages that cyclooxygenase 2/prostaglandin E 2 (COX-2/PGE 2 ) is elevated in diabetes and regulates downstream macrophage-mediated inflammation and host defense. Using single-cell RNA sequencing of human wound tissue, we identify increased NF-κB–mediated inflammation in diabetic wounds and show increased COX-2/PGE 2 in diabetic macrophages. Further, we identify that COX-2/PGE 2 production in wound macrophages requires epigenetic regulation of 2 key enzymes in the cytosolic phospholipase A 2 /COX-2/PGE 2 (cPLA 2 /COX-2/PGE 2 ) pathway. We demonstrate that TGF-β–induced miRNA29b increases COX-2/PGE 2 production via inhibition of DNA methyltransferase 3b–mediated hypermethylation of the Cox-2 promoter. Further, we find mixed-lineage leukemia 1 (MLL1) upregulates cPLA 2 expression and drives COX-2/PGE 2 . Inhibition of the COX-2/PGE 2 pathway genetically ( Cox2 fl/fl Lyz2 Cre+ ) or with a macrophage-specific nanotherapy targeting COX-2 in tissue macrophages reverses the inflammatory macrophage phenotype and improves diabetic tissue repair. Our results indicate the epigenetically regulated PGE 2 pathway controls wound macrophage function, and cell-targeted manipulation of this pathway is feasible to improve diabetic wound repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.