To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at
CHD1
. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at
P
<5×10
−8
, bringing the number of known independent signals for CRC to approximately 100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs, somatic drivers, and support a role of immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of underlying biology, and impact personalized screening strategies and drug development.
The enumeration and characterization of circulating tumor cells (CTCs), found in the peripheral blood of cancer patients, provide a potentially accessible source for cancer diagnosis and prognosis. This work reports on a novel spiral microfluidic device with a trapezoidal cross-section for ultra-fast, label-free enrichment of CTCs from clinically relevant blood volumes. The technique utilizes the inherent Dean vortex flows present in curvilinear microchannels under continuous flow, along with inertial lift forces which focus larger CTCs against the inner wall. Using a trapezoidal cross-section as opposed to a traditional rectangular cross-section, the position of the Dean vortex core can be altered to achieve separation. Smaller hematologic components are trapped in the Dean vortices skewed towards the outer channel walls and eventually removed at the outer outlet, while the larger CTCs equilibrate near the inner channel wall and are collected from the inner outlet. By using a single spiral microchannel with one inlet and two outlets, we have successfully isolated and recovered more than 80% of the tested cancer cell line cells (MCF-7, T24 and MDA-MB-231) spiked in 7.5 mL of blood within 8 min with extremely high purity (400-680 WBCs mL(-1); ~4 log depletion of WBCs). Putative CTCs were detected and isolated from 100% of the patient samples (n = 10) with advanced stage metastatic breast and lung cancer using standard biomarkers (CK, CD45 and DAPI) with the frequencies ranging from 3-125 CTCs mL(-1). We expect this simple and elegant approach can surmount the shortcomings of traditional affinity-based CTC isolation techniques as well as enable fundamental studies on CTCs to guide treatment and enhance patient care.
Nasopharyngeal carcinoma (NPC) has extremely skewed ethnic and geographic distributions, is poorly understood at the genetic level and is in need of effective therapeutic approaches. Here we determined the mutational landscape of 128 cases with NPC using whole-exome and targeted deep sequencing, as well as SNP array analysis. These approaches revealed a distinct mutational signature and nine significantly mutated genes, many of which have not been implicated previously in NPC. Notably, integrated analysis showed enrichment of genetic lesions affecting several important cellular processes and pathways, including chromatin modification, ERBB-PI3K signaling and autophagy machinery. Further functional studies suggested the biological relevance of these lesions to the NPC malignant phenotype. In addition, we uncovered a number of new druggable candidates because of their genomic alterations. Together our study provides a molecular basis for a comprehensive understanding of, and exploring new therapies for, NPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.