EGFR exon 20 insertion driver mutations (Exon20ins) in non-small cell lung cancer (NSCLC) are insensitive to EGFR tyrosine kinase inhibitors (TKI). Amivantamab (JNJ-61186372), a bispecifi c antibody targeting EGFR-MET, has shown preclinical activity in TKI-sensitive EGFR-mutated NSCLC models and in an ongoing fi rst-inhuman study in patients with advanced NSCLC. However, the activity of amivantamab in Exon20ins-driven tumors has not yet been described. Ba/F3 cells and patient-derived cells/organoids/xenograft models harboring diverse Exon20ins were used to characterize the antitumor mechanism of amivantamab. Amivantamab inhibited proliferation by effectively downmodulating EGFR-MET levels and inducing immune-directed antitumor activity with increased IFN γ secretion in various models. Importantly, in vivo effi cacy of amivantamab was superior to cetuximab or poziotinib, an experimental Exon20ins-targeted TKI. Amivantamab produced robust tumor responses in two Exon20ins patients, highlighting the important translational nature of this preclinical work. These fi ndings provide mechanistic insight into the activity of amivantamab and support its continued clinical development in Exon20ins patients, an area of high unmet medical need. SIGNIFICANCE: Currently, there are no approved targeted therapies for EGFR Exon20ins-driven NSCLC. Preclinical data shown here, together with promising clinical activity in an ongoing phase I study, strongly support further clinical investigation of amivantamab in EGFR Exon20ins-driven NSCLC.
Microglia, brain resident macrophages, are activated in brain injuries and several neurodegenerative diseases. However, microglial activators that are produced in the brain are not yet defined. In this study, we showed that gangliosides, sialic acid-containing glycosphingolipids, could be a microglial activator. Gangliosides induced production of nitric oxide (NO) and tumor necrosis factor-␣ (TNF-␣) and expression of cyclooxygenase-2 (COX-2). The effect of gangliosides on NO release increased dose-dependently in the range of 10 -100 g/ml; however, the effect decreased at concentrations higher than 200 g/ml.
The present study was conducted to develop a new animal model of neuropathic pain employing injury to the distal sciatic nerve branches. Under halothane anesthesia, the tibial, sural, and/or common peroneal nerves were injured and neuropathic pain behaviors were compared among different groups of rats. Different types of injury produced different levels of neuropathic pain. Rats with injury to the tibial and sural nerves showed the most vigorous mechanical allodynia, cold allodynia, and spontaneous pain. These neuropathic pain behaviors were not relieved by functional sympathectomy using guanethidine.The results suggested that injury to the tibial and sural nerves, while leaving the common peroneal nerve intact, can be used as a new animal model of neuropathic pain and that this model represents sympathetically independent pain (SIP). The present animal model is very simple to produce injury and can produce profound and reliable pain behaviors. These features enable the new animal model to be a useful tool in elucidating the mechanisms of neuropathic pain, especially SIP. NeuroReport
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.