Achieving time-domain control of quantum states with atomic-scale spatial resolution in nanostructures is a long-term goal in quantum nanoscience and spintronics. Here, we demonstrate coherent spin rotations of individual atoms on a surface at the nanosecond time scale, using an all-electric scheme in a scanning tunneling microscope (STM). By modulating the atomically confined magnetic interaction between the STM tip and surface atoms, we drive quantum Rabi oscillations between spin-up and spin-down states in as little as ~20 nanoseconds. Ramsey fringes and spin echo signals allow us to understand and improve quantum coherence. We further demonstrate coherent operations on engineered atomic dimers. The coherent control of spins arranged with atomic precision provides a solid-state platform for quantum-state engineering and simulation of many-body systems.
Designing and characterizing the many-body behaviors of quantum materials represents a prominent challenge for understanding strongly correlated physics and quantum information processing. We constructed artificial quantum magnets on a surface by using spin-1/2 atoms in a scanning tunneling microscope (STM). These coupled spins feature strong quantum fluctuations due to antiferromagnetic exchange interactions between neighboring atoms. To characterize the resulting collective magnetic states and their energy levels, we performed electron spin resonance on individual atoms within each quantum magnet. This gives atomic-scale access to properties of the exotic quantum many-body states, such as a finite-size realization of a resonating valence bond state. The tunable atomic-scale magnetic field from the STM tip allows us to further characterize and engineer the quantum states. These results open a new avenue to designing and exploring quantum magnets at the atomic scale for applications in spintronics and quantum simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.