Western Japan was hit by heavy rain from June 8 to July 28, 2018. Record-breaking rain caused nearly all rivers to flood in Hiroshima and other areas. Over 200 people died following this disaster. Authorities attempted to understand why evacuation was not conducted swiftly enough to stop these deaths. They mentioned that normalcy bias and cognitive dissonance are two primary causes of significant damage [1]. Moreover, an effective alert system is necessary to ensure that evacuation behaviors and procedures are incited at the appropriate time. To understand the factors that influence people’s behavior, we estimated the probability of irregular behavior by unit changes in external condition. We chose 500 m mesh as a unit of analysis to consider individual singularity and classified 3 classes of mesh to identify abnormal behavior. We verified that as the number of residents in each mesh increases, the likelihood of a person in that region to exhibit normalcy bias increases as well. Owing to data, the accuracy of this method is somewhat low. However, several implications may still be drawn from our results, such as the demand for an adequate alert system. Using the results of people’s mobility and disaster risk information, approaches to dangerous situations such as the examined case may be improved in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.