The priority placed on animal welfare in the meat industry is increasing the importance of understanding livestock behavior. In this study, we developed a web-based monitoring and recording system based on artificial intelligence analysis for the classification of cattle sounds. The deep learning classification model of the system is a convolutional neural network (CNN) model that takes voice information converted to Mel-frequency cepstral coefficients (MFCCs) as input. The CNN model first achieved an accuracy of 91.38% in recognizing cattle sounds. Further, short-time Fourier transform-based noise filtering was applied to remove background noise, improving the classification model accuracy to 94.18%. Categorized cattle voices were then classified into four classes, and a total of 897 classification records were acquired for the classification model development. A final accuracy of 81.96% was obtained for the model. Our proposed web-based platform that provides information obtained from a total of 12 sound sensors provides cattle vocalization monitoring in real time, enabling farm owners to determine the status of their cattle.
Partial least squares regression (PLSR) prediction models were developed using hyperspectral imaging for noninvasive detection of the five most representative functional components in Brassica juncea leaves: chlorophyll, carotenoid, phenolic, glucosinolate, and anthocyanin contents. The region of interest for functional component analysis was chosen by polygon selection and the extracted average spectra were used for model development. For pre-processing, 10 combinations of Savitzky–Golay filter (S. G. filter), standard normal variate (SNV), multiplicative scatter correction (MSC), 1st-order derivative (1st-Der), 2nd-order derivative (2nd-Der), and normalization were applied. Root mean square errors of calibration (RMSEP) was used to assess the performance accuracy of the constructed prediction models. The prediction model for total anthocyanins exhibited the highest prediction level (RV2 = 0.8273; RMSEP = 2.4277). Pre-processing combination of SNV and 1st-Der with spectral data resulted in high-performance prediction models for total chlorophyll, carotenoid, and glucosinolate contents. Pre-processing combination of S. G. filter and SNV gave the highest prediction rate for total phenolics. SNV inclusion in the pre-processing conditions was essential for developing high-performance accurate prediction models for functional components. By enabling visualization of the distribution of functional components on the hyperspectral images, PLSR prediction models will prove valuable in determining the harvest time.
Maintaining environmental conditions for proper plant growth in greenhouses requires managing a variety of factors; ventilation is particularly important because inside temperatures can rise rapidly in warm climates. The structure of the window installed in a greenhouse is very diverse, and it is difficult to identify the characteristics that affect the temperature inside the greenhouse when multiple windows are driven, respectively. In this study, a new ventilation control logic using an output feedback neural-network (OFNN) prediction and optimization method was developed, and this approach was tested in multi-window greenhouses used for strawberry production. The developed prediction model used 15 inputs and achieved a highly accurate performance (R2 of 0.94). In addition, the method using an algorithm based on an OFNN was proposed for optimizing considered six window-opening behavior. Three case studies confirmed the optimization performance of OFNN in the nonlinear model and verified the performance through simulations. Finally, a control system based on this logic was used in a field experiment for six days by comparing two greenhouses driven by conventional control logic and the developed control logic; a comparison of the results showed RMSEs of 3.01 °C and 2.45 °C, respectively. It confirmed the improved control performance in comparison to a conventional ventilation control system.
The greenhouse industry achieves stable agricultural production worldwide. Various information and communication technology techniques to model and control the environment have been applied as data from environmental sensors and actuators in greenhouses are monitored in real time. The current study designed data-based, deep learning models for evapotranspiration (ET) and humidity in tomato greenhouses. Using time-series data and applying long short-term memory (LSTM) modeling, an ET prediction model was developed and validated in comparison with the Stanghellini model. Training with 20-day and testing with 3-day data resulted in RMSEs of 0.00317 and 0.00356 kgm−2 s−1, respectively. The standard error of prediction indicated errors of 5.76 and 6.45% in training and testing, respectively. Variables were used to produce a feature map using a two-dimensional convolution layer which was transferred to a subsequent layer and finally connected with the LSTM structure for modeling. The RMSE in humidity prediction using the test dataset was 2.87, indicating a performance better than conventional RNN-LSTM models. Irrigation plans and humidity control may be more accurately conducted in greenhouse cultivation using this model.
The integration of hyperspectral imaging with machine learning algorithms has presented a promising strategy for the non-invasive and rapid detection of plant metabolites. For this study, we developed prediction models using partial least squares regression (PLSR) and boosting algo-rithms (such as AdaBoost, XGBoost, and LightGBM) for five metabolites in Brassica juncea leaves: total chlorophyll, phenolics, flavonoids, glucosinolates, and anthocyanins. To enhance the model performance, we employed several spectral data preprocessing methods and feature-selection al-gorithms. Our results showed that the boosting algorithms generally outperformed the PLSR models in terms of prediction accuracy. In particular, the LightGBM model for chlorophyll and the AdaBoost model for flavonoids improved the prediction performance, with R2p = 0.71–0.74, com-pared to the PLSR models (R2p = 0.53–0.58). The final models for the glucosinolates and anthocya-nins performed sufficiently for practical uses such as screening, with R2p = 0.82–0.85 and RPD = 2.4–2.6. Our findings indicate that the application of a single preprocessing method is more effective than utilizing multiple techniques. Additionally, the boosting algorithms with feature selection ex-hibited superior performance compared to the PLSR models in the majority of cases. These results highlight the potential of hyperspectral imaging and machine learning algorithms for the non-destructive and rapid detection of plant metabolites, which could have significant implications for the field of smart agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.