Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation-extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings.
The trend for increasing biodiversity from the poles to the tropics is one of the best-known patterns in nature. This latitudinal biodiversity gradient has primarily been documented so far with extant species as the measure of biodiversity. Here, we evaluate the global pattern in biodiversity across latitudes based on the magnitude of genetic population divergence within plant species, using a robust spatial design to compare published allozyme datasets. Like the pattern of plant species richness across latitudes, we expected the divergence among populations of current plant species would have a similar pattern and direction. We found that lower latitudinal populations showed greater genetic differentiation within species after controlling for geographical distance. Our analyses are consistent with previous population-level studies in animals, suggesting a high possibility of tropical peaks in speciation rates associated with observed levels of species richness.
In some organisms, their habitat can broadly predict their population genetic diversity. For example, marine fishes harbor considerably more genetic diversity than do freshwater fishes because of the larger long-term evolutionary effective population sizes in the former. Body mass (BM) is another predictor of genetic variation, in that small-bodied mammals generally have higher rates of molecular evolution than large mammals. Does genetic variation in birds vary similarly? We investigated the relationships among microsatellite DNA diversity, BM and habitat type (aquatic or terrestrial) in 76 avian species. Our results show that across 1008 avian microsatellite loci, mean heterozygosity was positively correlated with the number of alleles per species. The mean level of heterozygosity and allele number in birds were similar to those of mammals and reptiles, but smaller than fishes. Terrestrial birds have greater genetic diversity (both in terms of mean heterozygosity and allelic diversity per population) than aquatic species. BM of aquatic birds was significantly larger than that of terrestrial birds and there was a negative relationship between mean heterozygosity and BM. Our results, interpreted in light of previously published data from other vertebrates, suggest that patterns of genetic diversity in birds depends on their evolutionary effective population size (determined in part by ecological and environmental features) and on the rate of molecular evolution.
A phylogenetic supertree of the fowls (Galloanserae, Aves). -Zoologica Scripta, 38, 465-481. The fowls (Anseriformes and Galliformes) comprise one of the major lineages of birds and occupy almost all biogeographical regions of the world. The group contains the most economically important of all bird species, each with a long history of domestication, and is an ideal model for studying ecological and evolutionary patterns. Yet, despite the relatively large amount of systematic attention fowls have attracted because of their socio-economic and biological importance, the species-level relationships within this clade remain controversial. Here we used the supertree method matrix representation with parsimony to generate a robust estimate of species-level relationships of fowls. The supertree represents one of the most comprehensive estimates for the group to date, including 376 species (83.2% of all species; all 162 Anseriformes and 214 Galliformes) and all but one genera. The supertree was well-resolved (81.1%) and supported the monophyly of both Anseriformes and Galliformes. The supertree supported the partitioning of Anseriformes into the three traditional families Anhimidae, Anseranatidae, and Anatidae, although it provided relatively poor resolution within Anatidae. For Galliformes, the majority-rule supertree was largely consistent with the hypothesis of sequential sister-group relationships between Megapodiidae, Cracidae, and the remaining Galliformes. However, our species-level supertree indicated that more than 30% of the polytypic genera examined were not monophyletic, suggesting that results from genus-level comparative studies using the average of the constituent species' traits should be interpreted with caution until analogous species-level comparative studies are available. Poorly resolved areas of the supertree reflect gaps or outstanding conflict within the existing phylogenetic database, highlighting areas in need of more study in addition to those species not present on the tree at all due to insufficient information. Even so, our supertree will provide a valuable foundation for understanding the diverse biology of fowls in a robust phylogenetic framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.