Statistical trend analysis using the data from the National Groundwater Quality Monitoring Network (NGQMN) of Korea was conducted to establish a new groundwater quality management framework. Sen's test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of the groundwater quality data. The analysis was conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99% confidence levels) for three of groundwater quality parameters, i.e., nitrate-nitrogen, chloride, and pH, which have sufficient time series of the NGQMN data between 2007 and 2013. The results showed that different trends can be determined for different depths even for the same monitoring site and the numbers of wells having significant trends vary with different confidence levels. The wells with increasing or decreasing trends were far less than the wells with no trend. Chloride had more wells with increasing trend than other parameters. On the other hand, nitrate-nitrogen had the most wells with increasing trend and concentration exceeding 75% of the threshold values (TVs). Based on the methodology used for this study, we suggest including groundwater TVs and trend analysis to evaluate groundwater quality and to establish an advanced groundwater quality management framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.