A short laser pulse is irradiated on a sample to create a highly energetic plasma that emits light of a specific peak wavelength according to the material. By identifying different peaks for the analyzed samples, their chemical composition can be rapidly determined. The characteristics of the laser-induced breakdown spectroscopy (LIBS) plasma are strongly dependent on the ambient conditions. Research aimed at enhancing LIBS intensity is of great benefit in advancing LIBS for the exploration of harsh environments. By using double-pulse LIBS, the signal intensity of Al and Ca lines was enhanced by five times compared to the single-pulse signal. Also, the angles of the target and detector are adjusted to simulate samples of arbitrary shape. We verified that there exists an optimal angle at which specific elements of a test sample may be detected with stronger signal intensity. We provide several optimum configurations for the LIBS system for maximizing the signal intensity for the analysis of a nonstandard aluminum sample.
Lithographic nanopatterning techniques such as photolithography, electron-beam lithography, and nanoimprint lithography (NIL) have revolutionized modern-day electronics and optics. Yet, their application for creating nanobio interfaces is limited by the cytotoxic and two-dimensional nature of conventional fabrication methods. Here, we present a biocompatible and cost-effective transfer process that leverages (a) NIL to define sub-300 nm gold (Au) nanopattern arrays, (b) amine functionalization of Au to transfer the NIL-arrays from a rigid substrate to a soft transfer layer, (c) alginate hydrogel as a flexible, degradable transfer layer, and (d) gelatin conjugation of the Au NIL-arrays to achieve conformal contact with live cells. We demonstrate biotransfer printing of the Au NIL-arrays on rat brains and live cells with high pattern fidelity and cell viability and observed differences in cell migration on the Au NIL-dot and NIL-wire printed hydrogels. We anticipate that this nanolithography-compatible biotransfer printing method could advance bionics, biosensing, and biohybrid tissue interfaces.
Lithographic nanopatterning techniques like photolithography, electron-beam lithography, and nanoimprint lithography (NIL) have revolutionized modern-day electronics and optics. Yet, their application for creating nano-bio interfaces is limited by the cytotoxic and two-dimensional nature of conventional fabrication methods. Here, we present a biocompatible and cost-effective transfer process that leverages (a) NIL to define sub-300 nm gold (Au) nanopattern arrays, (b) amine functionalization of Au to transfer the NIL-arrays from a rigid substrate to a soft transfer layer, (c) alginate hydrogel as a flexible, degradable transfer layer, and (d) gelatin conjugation of the Au NIL-arrays to achieve conformal contact with live cells. We demonstrate biotransfer printing of the Au NIL-arrays on rat brains and live cells with high pattern fidelity and cell viability and observed differences in cell migration on the Au NIL-dot and NIL-wire printed hydrogels. We anticipate that this nanolithography-compatible biotransfer printing method could advance bionics, biosensing, and biohybrid tissue interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.