We present the mechanism for the cellular uptake of layered double hydroxide (LDH) nanoparticles that are internalized into MNNG/HOS cells principally via clathrin-mediated endocytosis. The intracellular LDHs are highly colocalized with not only typical endocytic proteins, such as clathrin heavy chain, dynamin, and eps15, but also transferrin, a marker of the clathrin-mediated process, suggesting their specific internalization pathway. LDHs loaded with an anticancer drug (MTX-LDH) were also prepared to confirm the efficacy of LDHs as drug delivery systems. The cellular uptake of MTX was higher in MTX-LDH-treated cells than in MTX-treated cells, giving a lower IC50 value for MTX-LDH than for MTX only. The inhibition of the cell cycle was greater for MTX-LDH than for MTX only. This result clearly shows that the internalization of LDH nanoparticles via clathrin-mediated endocytosis may allow the efficient delivery of MTX-LDH in cells and thus enhance drug efficacy.
Layered double hydroxides (LDHs) are biocompatible materials which can be used as drug-delivery nanovehicles. In order to define the optimum size of LDH nanoparticles for efficient cellular uptake and drug-delivery pathway, we prepared different sized LDH nanoparticles with narrow size distribution by modulating the crystal growth rate, and labelled each LDH particle with a fluorophore using a silane coupling reaction. The cellular uptake rate of LDHs was found to be highly dependent on particle size (50 > 200 > or = 100 > 350 nm), whose range of 50 to 200 nm was selectively internalized into cells through clathrin-mediated endocytosis with enhanced permeability and retention. Our study clearly shows that not only the particle size plays an important role in the endocytic pathway and processing, but also the size control of LDH nanoparticles results in their targeted uptake to site-specific clathrin-mediated endocytosis. This result provides a new perspective for the design of LDH nanoparticles with maximum ability towards targeted drug delivery.
Layered double hydroxides (LDHs), also known as anionic nanoclays or hydrotalcite-like compounds, have attracted a great deal of interest for their potential as delivery carriers. In this article, we describe the cellular uptake behaviors and uptake pathway of LDHs in vitro and in vivo, which can not only explain the mechanism by which high efficacy of biomolecules delivered through LDH nanocarriers could be obtained, but also provide novel strategies to enhance their delivery efficiency. Toxicological effects of LDHs in cell lines and in animal models are also present, aiming at providing critical information about their toxicity potential, which should be carefully considered for their biomedical application. Understanding the uptake behaviors, uptake mechanism and toxicity of LDHs in terms of dose-response relationship, diverse physicochemical properties and interaction with different biological systems is important to optimize delivery efficiency as well as biocompatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.