We recently demonstrated that application of mustard oil (MO), a small-fiber excitant and inflammatory irritant, to the rat maxillary molar tooth pulp induces significant and prolonged increases in jaw muscle electromyographic (EMG) activity that are suggestive of central neuroplasticity. Because small-fiber afferents, including pulp afferents, access nociceptive neurons in trigeminal (V) subnucleus caudalis, this study examined whether pulpal application of MO induces neuroplastic changes in caudalis nociceptive neurons (wide dynamic range and nociceptive specific) and whether central N-methyl--aspartate (NMDA) receptor mechanisms are involved in these MO-induced neuroplastic changes. After pretreatment with vehicle (saline, 10 microliter i.t.) to the surface of the medulla, the pulpal application of MO to the maxillary molar tooth pulp produced a significant increase in neuronal spontaneous activity, a significant expansion of the pinch and/or tactile mechanoreceptive field (RF), a significant decrease in mechanical threshold, and significant increases in neuronal responses to graded pinch stimuli. Compared with vehicle-treated rats, pretreatment with the NMDA receptor antagonist MK-801 (10 microgram/10 microliter i.t.) followed by MO application to the pulp in another group of rats significantly reduced or abolished these MO-induced neuroplastic changes in nociceptive neurons. In another group of rats pretreated with saline (intrathecally), mineral oil application to the pulp did not show any significant changes in spontaneous activity or RF properties over the 40-min observation period. The pulpal application of MO in other rats (pretreated with saline, intrathecally) did not produce any significant neuroplastic changes in caudalis low-threshold mechanoreceptive neurons. These results indicate that the MO-induced activation of molar pulpal afferents can produce profound NMDA receptor-related neuroplastic changes in caudalis nociceptive neurons. Such neuroplastic changes may contribute to the hyperalgesia and spread of pain that can be associated with pulpal inflammation.
We have recently demonstrated that application of the mustard oil (MO), a small-fiber excitant and inflammatory irritant, to the rat maxillary molar tooth pulp induces significant increases in jaw muscle electromyographic (EMG) activity and neuroplastic changes in trigeminal (V) subnucleus caudalis. Since subnucleus oralis (Vo) as well as caudalis receives projections from molar pulp afferents and is also an integral brain stem relay of afferent input from orofacial structures, we tested whether MO application to the exposed pulp induces neuroplastic changes in oralis neurons and whether microinjection of MK-801, a noncompetitive NMDA antagonist, into the Vo influences the pulp/MO-induced neuroplastic changes in chloralose/urethan-anesthetized rats. Single neuronal activity was recorded in Vo, and neurons classified as low-threshold mechanoreceptive (LTM), wide dynamic range (WDR), nociceptive-specific (NS), deep (D), or skin/mucosa and deep (S + D). The spontaneous activity, mechanoreceptive field (RF) size, mechanical threshold, and response to suprathreshold mechanical stimuli applied to the neuronal RF were assessed prior to and throughout a 40- to 60-min period after MO application to the maxillary molar pulp. In animals pretreated with saline microinjection (0.3 microl) into the Vo, MO application to the pulp produced a significant increase in spontaneous activity, expansion of the pinch or deep RF, decrease in the mechanical threshold, and increase in response to suprathreshold mechanical stimuli of the nociceptive (WDR, NS, and S + D) neurons except for those nociceptive neurons having their RF only in the intraoral region. The pulpal application of MO did not produce any significant neuroplastic changes in LTM neurons. Furthermore, in animals pretreated with MK-801 microinjection (3 microg/0.3 microl) into the Vo, MO application to the pulp did not produce any significant changes in the RF and response properties of nociceptive neurons. In other animals pretreated with saline (0.3 microl) or MK-801 (3 microg/0.3 microl) microinjected into the Vo, mineral oil application to the pulp did not produce any significant changes in RF and response properties of nociceptive neurons. These findings indicate that the application of MO to the tooth pulp can induce significant neuroplastic changes in oralis nociceptive neurons and that central NMDA receptor mechanisms may be involved in these neuroplastic changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.