The idea that randomly arranged supermolecular species incorporated in a network medium can ultimately create ordered structures at the surface may be counterintuitive. However, such order can be accommodated by regulating dynamic and equilibrium driving forces. Here, we present the ordering of M13 viruses, highly complex biomacromolecules, driven by competitive electrostatic binding, preferential macromolecular interactions and the rigid-rod nature of the virus systems during alternating electrostatic assembly. The steric constraints inherent to the competitive charge binding between M13 viruses and two oppositely charged weak polyelectrolytes leads to interdiffusion and the virtual 'floating' of viruses to the surface. The result is the spontaneous formation of a two-dimensional monolayer structure of viruses atop a cohesive polyelectrolyte multilayer. We demonstrate that this viral-assembled monolayer can be a biologically tunable scaffold to nucleate, grow and align nanoparticles or nanowires over multiple length scales. This system represents an interface that provides a general platform for the systematic incorporation and assembly of organic, biological and inorganic materials.
Biological scaffolds are used for the synthesis of inorganic materials due to their ability to self-assemble and nucleate crystal formation. We report the self-assembly of engineered M13 bacteriophage as a template for Co-Pt crystals. A M13 phage library with an octapeptide library on the major coat protein (pVIII) was used for selection of binders to cobalt ions. Fibrous structures with directionally ordered M13 phage were obtained by interaction with cobalt ions. Co-Pt alloys were synthesized on the fibrous scaffold, and their magnetic properties were characterized. The mineralization showed organized nanoparticles on fibrous bundles. This approach using the phage pVIII library allows for genetic selection that both induces assembly of the phage and directs mineralization of the selected inorganic material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.