Agonists to the μ-opioid G protein-coupled receptor (μOR) can alleviate pain through activation of G protein signaling, but they can also induce β-arrestin activation, leading to such side effects as respiratory depression. Biased ligands to μOR that induce G protein signaling without inducing β-arrestin signaling can alleviate pain while reducing side effects. However, the mechanism for stimulating β-arrestin signaling is not known, making it difficult to design optimum biased ligands. We use extensive molecular dynamics simulations to determine three-dimensional (3D) structures of activated β-arrestin2 stabilized by phosphorylated μOR bound to the morphine and D-Ala2,N-MePhe4, Gly-ol]-enkephalin (DAMGO) nonbiased agonists and to the TRV130 biased agonist. For nonbiased agonists, we find that the β-arrestin2 couples to the phosphorylated μOR by forming strong polar interactions with intracellular loop 2 (ICL2) and either the ICL3 or cytoplasmic region of transmembrane (TM6). Strikingly, Gi protein makes identical strong bonds with these same ICLs. Thus, the Gi protein and β-arrestin2 compete for the same binding site even though their recruitment leads to much different outcomes. On the other hand, we find that TRV130 has a greater tendency to bind the extracellular portion of TM2 and TM3, which repositions TM6 in the cytoplasmic region of μOR, hindering β-arrestin2 from making polar anchors to the ICL3 or to the cytosolic end of TM6. This dramatically reduces the affinity between μOR and β-arrestin2.
The kappa opioid receptor (κOR) is an important target for pain therapeutics to reduce depression and other harmful side effects of existing medications. The analgesic activity is mediated by κOR signaling through the adenylyl cyclase-inhibitory family of Gi protein. Here, we report the three-dimensional (3D) structure for the active state of human κOR complexed with both heterotrimeric Gi protein and MP1104 agonist. This structure resulted from long molecular dynamics (MD) and metadynamics (metaMD) simulations starting from the 3.1-Å X-ray structure of κOR–MP1104 after replacing the nanobody with the activated Gi protein and from the 3.5-Å cryo-EM structure of μOR–Gi complex after replacing the 168 missing residues. Using MD and metaMD we discovered interactions to the Gi protein with strong anchors to two intracellular loops and transmembrane helix 6 of the κOR. These anchors strengthen the binding, contributing to a contraction in the binding pocket but an expansion in the cytoplasmic region of κOR to accommodate G protein. These remarkable changes in κOR structure reveal that the anchors are essential for activation.
Significance We report the detailed atomistic mechanism for how molecules such as morphine, dopamine, or epinephrine binding outside of a cell to a G protein–coupled receptor (GPCR) in the cell membrane cause a G protein (GP) bound at the inside of the cell to break apart and signal the cell to influence appetite, anxiety, memory, cognition, learning, and sleep. Most surprising is that the GP binds first to the GPCR to form a precoupled complex that remains at rest until the drug binds to induce the signaling. Most important, it is the precoupled GPCR-GP structure that provides the basis for the design of therapeutics to maximize activity and selectivity.
Bitter taste is sensed by bitter taste receptors (TAS2Rs) that belong to the G protein-coupled receptor (GPCR) superfamily. In addition to bitter taste perception, TAS2Rs have been reported recently to be expressed in many extraoral tissues and are now known to be involved in health and disease. Despite important roles of TAS2Rs in biological functions and diseases, no crystal structure is available to help understand the signal transduction mechanism or to help develop selective ligands as new therapeutic targets. We report here the three-dimensional structure of the fully activated TAS2R4 human bitter taste receptor predicted using the GEnSeMBLE complete sampling method. This TAS2R4 structure is coupled to the gustducin G protein and to each of several agonists. We find that the G protein couples to TAS2R4 by forming strong salt bridges to each of the three intracellular loops, orienting the activated Gα5 helix of the Gα subunit to interact extensively with the cytoplasmic region of the activated receptor. We find that the TAS2Rs exhibit unique motifs distinct from typical Class A GPCRs, leading to a distinct activation mechanism and a less stable inactive state. This fully activated bitter taste receptor complex structure provides insight into the signal transduction mechanism and into ligand binding to TAS2Rs.
We report the G-Protein-First mechanism for activation of G protein-coupled receptors (GPCR) for the three closely subtypes of the opioid receptors (OR), h μOR, OR, and OR. We find that they couple to the inactive Gi protein-bound guanosine diphosphate (GDP) prior to agonist binding. The inactive Gi protein forms anchors to the intracellular loops of the inactive apo-μOR, apo-OR, and apo-OR, inducing opening of the cytoplasmic region to form a pre-activated state that holds Gi protein in place until agonist binds. Then, agonist binds to μOR, OR, and OR already complexed with Gi protein, to trigger the Gi to open up the tightly coupled GDP binding site, making GDP accessible for GTP exchange, an essential step for Gi signaling. We show that the agonist alone cannot open the intracellular region of μOR and OR, requiring Gi protein to open the cytoplasmic region by itself. We consider that this G Protein-First mechanism may apply to activation of other Class A GPCRs. However, for OR, agonist binding can open up the intracellular region to encourage Gi protein recruitment. Thus, activation of Gi protein mediated by OR favorably may proceed with either Ligand-First or G Protein-First activation mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.