Diesel exhaust particles (DEPs) are the main components of ambient particulate materials, including polyaromatic hydrocarbons (PAHs), n-PAHs, heavy metals, and gaseous materials. Many epidemiological, clinical, and toxicological studies have shown that ambient particles, including DEPs, are associated with respiratory disorders, such as asthma, allergic rhinitis, and lung cancer. However, the relationship between the biological response to DEPs and their chemical composition remains unclear. In this study, we investigated the physicochemical properties of DEPs before toxicological studies, and then administered a single intratracheal instillation of DEPs to mice. The mice were then killed 1, 7, 14 and 28 days after DEP exposure to observe the biological responses induced by DEPs over time. Our findings suggest that DEPs engulfed into cells induced a Th2-type inflammatory response followed by DNA damage, whereas DEPs not engulfed into cells induced a Th1-type inflammatory response. Further, the physicochemical properties, including surface charge, particle size, and chemical composition, of DEPs play a crucial role in determining the biological responses to DEPs. Consequently, we suggest that the biological response to DEPs depend on cell-particle interaction and the physicochemical properties of the particles.
Background Epstein-Barr virus (EBV)-associated cutaneous lymphoproliferative disorders are prevalent in Asia, and less frequent in Western countries. Aim To elucidate the possible association of EBV with CD30 + anaplastic large cell lymphoma (ALCL) involving the skin and lymphomatoid papulosis (LyP) in South Korea.
MethodsIn situ hybridization for EBV-encoded small RNA (EBER) and immunohistochemistry including viral latent membrane protein-1 (LMP-1) were performed on formalin-fixed, paraffin-embedded skin specimens of 26 cases of LyP and 16 cases of CD30 + ALCL involving the skin which were selected from six university hospital medical centers in South Korea.
Results
We report the case of a 67-year-old Korean woman with antiepiligrin cicatricial pemphigoid. The patient’s serum immunoprecipitated polypeptides that comigrated with those identified in serum from a representative patient with antiepiligrin cicatricial pemphigoid, and was reactive with the laminin β3-subunit on immunoblotting. She presented not only with cutaneous, oral and ocular, but also with laryngeal and esophageal involvement. Because the supraglottic stenosis was severe, she had to undergo tracheostomy to maintain airway patency.
Aluminum oxide nanoparticles (AlO NP) have been widely utilized in a variety of areas, including in the optical, biomedical and electronic fields and in the overall development of nanotechnologies. However, their toxicological profiles are still not fully developed. This study compared the distribution and immunotoxicity of two rod-types of AlO NP. As reported previously, the two types of AlO NP had different aspect ratios (long-type: 6.2 ± 0.6, short-type: 2.1 ± 0.4), but the size and surface charge were very similar. On Day 14 after a single intravenous (IV) injection (1.25 or 5 mg/kg), both AlO NP accumulated primarily in the liver and spleen and altered the levels of redox response-related elements. The accumulated level was higher in mice exposed to the long-type AlO NP compared to the short-type. Additionally, it was noted that the levels of IL-1β, IL-8 and MCP-1 were enhanced in the blood of mice exposed to both types of AlO NP and the percentages of neutrophils and monocytes among all white blood cells were increased only in mice injected with the long-type AlO NP (5 mg/kg). In addition, as compared to the control, co-expression of CD80 and CD86 (necessary for antigen presentation) on splenocytes together with a decreased expression of chemotaxis-related marker (CD195) was attenuated by exposure to the AlO NP, especially the long-type. Taken together, the data suggest that accumulation following a single IV injection with rod-types of AlO NP is strengthened by a high aspect ratio and, subsequently, this accumulation has the potential to influence immune functions in an exposed host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.