Up-regulation of adhesion molecules plays an important role in the infiltration of leukocytes into the skin during the development of various inflammatory skin diseases, such as atopic dermatitis. In this study, we investigated the modulatory effects of 2,3-dimethoxy-2′-hydroxychalcone (DMHC) on tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesiveness, as well as the molecular mechanisms underlying its action in the HaCaT human keratinocyte cell line. Pre-treating HaCaT cells with DMHC significantly suppressed TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness. DMHC inhibited TNF-α-induced activation of NF-ᴋB. In addition, DMHC induced HO-1 expression as well as NRF2 activation. Furthermore, HO-1 knockdown using siRNA reversed the inhibitory effect of DMHC on TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that DMHC may inhibit TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes by suppressing the signaling cascades leading to NF-ᴋB activation and inducing HO-1 expression in keratinocytes. [BMB Reports 2016; 49(1): 57-62]
In the central nervous system, viral infection can induce inflammation by up-regulating pro-inflammatory mediators that contribute to enhanced infiltration of immune cells into the central nervous areas. Celastrol is known to exert various regulatory functions, including anti-microbial activities. In this study, we investigated the regulatory effects and the mechanisms of action of celastrol against astrocytes activated with polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, as a model of pro-inflammatory mediated responses. Celastrol significantly inhibited poly(I:C)-induced expression of adhesion molecules, such as ICAM-1/VCAM-1, and chemokines, such as CCL2, CXCL8, and CXCL10, in CRT-MG human astroglioma cells. In addition, celastrol significantly suppressed poly(I:C)-induced activation of JNK MAPK and STAT1 signaling pathways. Furthermore, celastrol significantly suppressed poly(I:C)-induced activation of the NF-κB signaling pathway. These results suggest that celastrol may exert its regulatory activity by inhibiting poly(I:C)-induced expression of pro-inflammatory mediators by suppressing activation of JNK MAPK-STAT1/NF-κB in astrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.