Fracture healing is related to osteogenic differentiation and mineralization. Recently, due to the unwanted side effects and clinical limitations of existing treatments, various natural product-based chemical studies have been actively conducted. Albiflorin is a major ingredient in Paeonia lactiflora, and this study investigated its ability to promote osteogenic differentiation and fracture healing. To demonstrate the effects of albiflorin on osteoblast differentiation and calcified nodules, alizarin red S staining and von Kossa staining were used in MC3T3-E1 cells. In addition, BMP-2/Smad and Wnt/β-catenin mechanisms known as osteoblast differentiation mechanisms were analyzed through RT-PCR and western blot. To investigate the effects of albiflorin on fracture healing, fractures were induced using a chainsaw in the femur of Sprague Dawley rats, and then albiflorin was intraperitoneally administered. After 1, 2, and 3 weeks, bone microstructure was analyzed using micro-CT. In addition, histological analysis was performed by staining the fractured tissue, and the expression of osteogenic markers in serum was measured. The results demonstrated that albiflorin promoted osteoblastogenesis and the expression of RUNX2 by activating BMP-2/Smad and Wnt/β-catenin signaling in MC3T3-E1 cells. In addition, albiflorin upregulated the expression of various osteogenic genes, such as alkaline phosphatase, OCN, bone sialoprotein, OPN, and OSN. In the femur fracture model, micro-CT analysis showed that albiflorin played a positive role in the formation of callus in the early stage of fracture recovery, and histological examination proved to induce the expression of osteogenic genes in femur tissue. In addition, the expression of bone-related genes in serum was also increased. This suggests that albiflorin promotes osteogenesis, bone calcification and bone formation, thereby promoting the healing of fractures in rats.
Cone of Pinus densiflora (CP), or Korean red pinecone, is a cluster of Pinus densiflora fruit. CP has also been verified in several studies to have anti-oxidation, anti-fungal, anti-bacterial, and anti-melanogenic effects. However, anti-inflammatory effects have not yet been confirmed in the inflammatory responses of pinecones to allergic contact dermatitis. The purpose of this study is to prove the anti-inflammatory effect of CP on allergic contact dermatitis (ACD) in vitro and in vivo. CP inhibited the expression of TSLP, TARC, MCP-1, TNF-α, and IL-6 in TNF-α/IFN-γ-stimulated HaCaT cells and MCP-1, GM-CSF, TNF-α, IL-6, and IL-8 in PMACI (phorbol-12-myristate-13-acetate plus A23187)-stimulated HMC-1 cells. CP inhibited the phosphorylation of mitogen-activated protein kinase (MAPKs), as well as the translocation of NF-κB on TNF-α/IFN-γ stimulated in HaCaT cells. In vivo, CP decreased major symptoms of ACD, levels of IL-6 in skin lesion, thickening of the epidermis and dermis, infiltration of eosinophils and mast cells, and the infiltration of CD4+ T cells and CD8+ T cells. This result suggests that CP represents a potential alternative medicine to ACD for diseases such as chronic skin inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.