BackgroundTo date, much research has been conducted to measure needle manipulation quantitatively and objectively. This study was performed to quantitatively measure the differences in the amount of stimulation caused by various rotation frequencies and angles in twisting–rotating acupuncture needle manipulation.MethodsThe torque Z force exerted on a tissue was measured at various rotation frequencies and angles by rotating a needle with a needle force measurement system attached to a needle insertion tissue model.ResultsThe results show that with rotation frequency at 60°, the torque Z force increased significantly from 0.023 N mm to 0.118 N mm as the rotation angle increased (p < 0.05). In addition, the torque Z force was significantly increased from 0.082 N mm to 0.292 N mm when the rotation angle increased from 60° to 180° at 0.15 Hz. (p < 0.05). A strong linear positive relationship between the torque Z force and rotation angle or frequency was obtained [Pearson correlation coefficient (r) > 0.88; p < 0.001].ConclusionThe change in needle–tissue interaction force by rotating angles showed a tendency to be higher than those by rotation frequency. Further quantitative research on various manipulations will be required for a standardized education on manipulation and stimulation as well as on needle model development to become possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.