T he aim of the Korean Imatinib Discontinuation Study was to identify predictors for safe and successful imatinib discontinuation. A total of 90 patients with a follow-up of ≥12 months were analyzed. After a median follow-up of 26.6 months after imatinib discontinuation, 37 patients lost the major molecular response. The probability of sustained major molecular response at 12 months and 24 months was 62.2% and 58.5%, respectively. All 37 patients who lost major molecular response were retreated with imatinib therapy for a median of 16.9 months, and all achieved major molecular response again at a median of 3.9 months after resuming imatinib therapy. We observed newly developed or worsened musculoskeletal pain and pruritus in 27 (30%) patients after imatinib discontinuation. Imatinib withdrawal syndrome was associated with a higher probability of sustained major molecular response (P=0.003) and showed a trend for a longer time to major molecular response loss (P=0.098). Positivity (defined as ≥ 17 positive chambers) of digital polymerase chain reaction at screening and longer imatinib duration before imatinib discontinuation were associated with a higher probability of sustained major molecular response. Our data demonstrated that the occurrence of imatinib withdrawal syndrome after imatinib discontinuation and longer duration of imatinib were associated with a lower rate of molecular relapse. In addition, minimal residual leukemia measured by digital polymerase chain reaction had a trend for a higher molecular relapse.
Arl13b belongs to the ADP-ribosylation factor family within the Ras superfamily of regulatory GTPases. Mutations in Arl13b cause Joubert syndrome, which is characterized by congenital cerebellar ataxia, hypotonia, oculomotor apraxia, and mental retardation. Arl13b is highly enriched in cilia and is required for ciliogenesis in multiple organs. Nevertheless, the precise role of Arl13b remains elusive. Here we report that the exocyst subunits Sec8, Exo70, and Sec5 bind preferentially to the GTP-bound form of Arl13b, consistent with the exocyst being an effector of Arl13b. Moreover, we show that Arl13b binds directly to Sec8 and Sec5. In zebrafish, depletion of arl13b or the exocyst subunit sec10 causes phenotypes characteristic of defective cilia, such as curly tail up, edema, and abnormal pronephric kidney development. We explored this further and found a synergistic genetic interaction between arl13b and sec10 morphants in cilia-dependent phenotypes. Through conditional deletion of Arl13b or Sec10 in mice, we found kidney cysts and decreased ciliogenesis in cells surrounding the cysts. Moreover, we observed a decrease in Arl13b expression in the kidneys from Sec10 conditional knockout mice. Taken together, our results indicate that Arl13b and the exocyst function together in the same pathway leading to functional cilia.
RPS3, a conserved, eukaryotic ribosomal protein of the 40 S subunit, is required for ribosome biogenesis. Because ribosomal proteins are abundant and ubiquitous, they may have additional extraribosomal functions. Here, we show that human RPS3 is a physiological target of Akt kinase and a novel mediator of neuronal apoptosis. NGF stimulation resulted in phosphorylation of threonine 70 of RPS3 by Akt, and this phosphorylation was required for Akt binding to RPS3. RPS3 induced neuronal apoptosis, up-regulating proapoptotic proteins Dp5/Hrk and Bim by binding to E2F1 and acting synergistically with it. Akt-dependent phosphorylation of RPS3 inhibited its proapoptotic function and perturbed its interaction with E2F1. These events coincided with nuclear translocation and accumulation of RPS3, where it functions as an endonuclease. Nuclear accumulation of RPS3 results in an increase in DNA repair activity to some extent, thereby sustaining neuronal survival. Abolishment of Akt-mediated RPS3 phosphorylation through mutagenesis accelerated apoptotic cell death and severely compromised nuclear translocation of RPS3. Thus, our findings define an extraribosomal role of RPS3 as a molecular switch that accommodates apoptotic induction to DNA repair through Akt-mediated phosphorylation.Nerve growth factor (NGF) deprivation and DNA damage can activate the intrinsic apoptotic pathway, causing cytochrome c release and caspase-dependent cell death in many cell types, including sympathetic neurons (1-5). NGF regulates neuronal apoptosis through a variety of cellular signaling mechanisms, especially the phosphoinositide 3-kinase (PI3K)/Akt pathway (6). Akt signaling promotes cell survival by phosphorylating and controlling downstream effectors in both the cytoplasm and the nucleus. For instance, Akt phosphorylates the proapoptotic Bcl-2 family member BAD (7) that belongs to the cytoplasmic apoptotic apparatus. In addition, Akt inhibits chromatin condensation during apoptosis by phosphorylating ACINUS, a nuclear factor required for apoptotic chromatin condensation (8). PI3K and Akt are predominantly located in the cytoplasm, but they are also found in the nucleus or translocate there upon stimulation by growth factors (9 -11) or DNA damage (9 -12).Ribosomal protein S3 (RPS3) is a component of the 40 S ribosomal subunit and is involved in its maturation (13). A growing body of evidence suggests that ribosomal proteins are capable of extraribosomal functions. For example, RPS3, also known as UV endonuclease III, appears to possess a general base damage endonuclease that participates in the cleavage of DNA lesions caused by UV irradiation. In addition, both RPS3 and ribosomal protein P0 have an apurinic/apyrimidinic (AP) 2 endonuclease activity functioning in DNA repair at the 3Ј side of AP sites after DNA damage (14 -16). In addition, ribosomal proteins may have apoptotic functions as follows: RPS3-a is involved in the apoptotic process in NIH3T3 cells (17), and knockdown of rpS3 leads to significant cell survival after hydrogen peroxid...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.