Plant-mediated silver nanoparticles are unique and are considered one of the best nanomaterials used in cancer research. We report a low-cost, eco-friendly process of green synthesis of AgNPs from Commiphora gileadensis stem extracts and evaluated their anticancer potential against colon cancer cell lines HCT-116, HT 29, and SW620. Anticancer activities were performed by an MTT assay and gene expression levels of four genes CHEK1, CHEK2, ATR, and ATM by the real-time polymerase chain reaction. Particles were initially confirmed by UV-visible spectroscopy. The morphology and stability of the particles were examined through TEM, zeta potential, and zeta sizer. GC-MS and FTIR were performed to examine the functional groups. The absorption peak was recorded at 430 nm; the average size recorded by TEM images was 13 nm, while the zeta potential and zeta sizer study showed aggregation in nanoparticles. Compared to C. gileadensis extracts, some of the FT-IR spectrum peaks were sight shifted with some new peaks in C. gileadensis AgNPs. C. gileadensis AgNPs were more toxic against HT29 followed by HTC116 and SW620. Expression levels of most of the genes in HCT116 and HT29 were increased by treatment whereas the gene expression level was least affected in SW620. C. gileadensis AgNPs have anticancer potential and need to be explored in cancer research.
Silver nanoparticles (AgNPs) are toxic to various microbes, but the mechanism of action is not fully understood. The present report explores Azadirachta indica leaf extract as a reducing agent for the rapid biosynthesis of AgNPs. The effects of AgNPs on the growth, glutathione-S-transferase (GST) activity, and total protein concentration in Staphylococcus aureus were investigated, as was its antibacterial activity against seven other bacterial strains. Nanoparticle synthesis was confirmed by the UV-Vis spectrum and colour change of the solution. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential analysis, and infrared spectroscopy were used to characterise the synthesised nanoparticles. The UV-Visible spectrograph showed an absorbance peak at 420 nm. DLS analysis showed an average AgNP size of 159 nm and a Polydispersity Index of 0.373. SEM analysis showed spherical particle shapes, while TEM established an average AgNP size of 7.5 nm. The element analysis profile showed small peaks for calcium, potassium, zinc, chlorine, with the presence of oxygen and silver. AgNPs markedly affected the growth curves and GST activity in treated bacteria, and produced moderate antibacterial activity. Thus AgNPs synthesised from A. indica leaves can interrupt the growth curve and total protein concentration in bacterial cells.
Agaricus bisporus, the most widely cultivated mushroom, is safe to eat and enriched with protein and secondary metabolites. We prepared silver nanoparticles (AgNPs) from two varieties of A. bisporus and tested their antibacterial activity The synthesized AgNPs were initially confirmed by UV-Vis spectroscopy peaks at 420 and 430 nm for white and brown mushrooms AgNPs, respectively. AgNPs were further characterized by zeta sizer, transmission electronic microscopy (TEM), Fourier transform infrared (FTIR), and energy-dispersive X-ray spectroscopy (EDX) prior to antibacterial activity by the well diffusion method against six bacterial strains which include Staphylococcus aureus, Staphylococcus epidermis, Bacillus subtilis, Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa. TEM results revealed a spherical shape with an average diameter of about 11 nm in the white mushroom extract and 5 nm in the brown mushroom extract. The presence of elemental silver in the prepared AgNPs was confirmed by EDS. The IR spectrum of the extract confirmed the presence of phenols, flavonoids, carboxylic, or amide groups which aided in the reduction and capping of synthesized AgNPs. The AgNPs from both extracts showed almost the same results; however, nanoparticles prepared from brown mushrooms were smaller in size with strong antibacterial activity.
Marine green algae are rich in various bioactive components with known anticancer activity. Some anticancer drugs present in green algae are in clinical trials nowadays. Algae-mediated silver nanoparticles (AgNPs) have been of a great interest in cancer treatment due to their unique physico-chemical properties. In this study, we evaluate the anticancer efficiency of marine alga Chaetomorpha ligustica collected from the Arabian Gulf against colon cancer cell lines HT29 and HCT116. The anticancer potential of biosynthesized AgNPs from C. ligustica extract is also reported. Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry analyses were used to identify the phytoconstituents present in algae extract. The synthesized AgNPs were confirmed via UV-Vis spectroscopy, whereas their morphology and stability were recorded by transmission electron microscopy (TEM), zeta potential, and zetasizer. We recorded absorption peak at 420 nm; TEM images showed an average size of 8.8 nm, whereas zeta potential and zetasizer study showed aggregation of nanoparticles. FTIR spectroscopy peaks of C. ligustica AgNPs were a little different from those of the C. ligustica extract. Both extracts showed cytotoxicity against cancer cell lines in a dose-dependent manner, but nanoparticles were found to be more toxic than algae extract. HT29 was found to be more sensitive than HCT116. For the first time, species of C. ligustica have been used and reported for the synthesis of nanoparticles. C. ligustica and its biogenic nanoparticles need to be scaled up for many biomedical applications especially in cancer research.
Genetic polymorphism in long noncoding RNA (lncRNA) HOTAIR is linked with the risk and susceptibility of various cancers in humans. The mechanism involved in the development of CRC is not fully understood but single nucleotide polymorphisms (SNPs) can be used to predict its risk and prognosis. In the present case-control study, we investigated the relationship between HOTAIR (rs12826786, rs920778, and rs1899663) polymorphisms and CRC risk in the Saudi population by genotyping using a TaqMan genotyping assay in 144 CRC cases and 144 age- and sex-matched controls. We found a significant (p < 0.05) association between SNP rs920778 G > A and CRC risk, and a protective role of SNPs rs12826786 (C > T) and rs1899663 (C > A) was noticed. The homozygous mutant “AA” genotype at rs920778 (G > A) showed a significant correlation with the female sex and colon tumor site. The homozygous TT in SNP rs12816786 (C > T) showed a significant protective association in the male and homozygous AA of SNP rs1899663 (C > A) with colon tumor site. These results indicate that HOTAIR can be a powerful biomarker for predicting the risk of colorectal cancer in the Saudi population. The association between HOTAIR gene polymorphisms and the risk of CRC in the Saudi population was reported for the first time here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.