As the COVID-19 spread over the globe and new variants of COVID-19 keep occurring, reliable real-time forecasts of COVID-19 hospitalizations are critical for public health decisions on medical resources allocations. This paper aims to forecast future 2 weeks national and state-level COVID-19 new hospital admissions in the United States. Our method is inspired by the strong association between public search behavior and hospitalization admissions and is extended from a previously-proposed influenza tracking model, AutoRegression with GOogle search data (ARGO). Our LASSO-penalized linear regression method efficiently combines Google search information and COVID-19 related time series information with dynamic training and rolling window prediction. Compared to other publicly available models collected from COVID-19 forecast hub, our method achieves substantial error reduction in a retrospective out-of-sample evaluation from Jan 4, 2021, to Dec 27, 2021. Overall, we showed that our method is flexible, self-correcting, robust, accurate, and interpretable, making it a potentially powerful tool to assist healthcare officials and decision making for the current and future infectious disease outbreaks.
As the COVID-19 spread over the globe and new variants of COVID-19 keep occurring, reliable real-time forecasts of COVID-19 hospitalizations are critical for public health decision on medical resources allocations such as ICU beds, ventilators, and personnel to prepare for the surge of COVID-19 pandemics. Inspired by the strong association between public search behavior and hospitalization admission, we extended previously-proposed influenza tracking model, ARGO (AutoRegression with GOogle search data), to predict future 2-week national and state-level COVID-19 new hospital admissions. Leveraging the COVID-19 related time series information and Google search data, our method is able to robustly capture new COVID-19 variants’ surges, and self-correct at both national and state level. Based on our retrospective out-of-sample evaluation over 12-month comparison period, our method achieves on average 15% error reduction over the best alternative models collected from COVID-19 forecast hub. Overall, we showed that our method is flexible, self-correcting, robust, accurate, and interpretable, making it a potentially powerful tool to assist health-care officials and decision making for the current and future infectious disease outbreak.
As the COVID-19 spread over the globe and new variants of COVID-19 keep occurring, reliable real-time forecasts of COVID-19 hospitalizations are critical for public health decision on medical resources allocations such as ICU beds, ventilators, and personnel to prepare for the surge of COVID-19 pandemics. Inspired by the strong association between public search behavior and hospitalization admission, we extended previously-proposed influenza tracking model, ARGO (AutoRegression with GOogle search data), to predict future 2-week national and state-level COVID-19 new hospital admissions. Leveraging the COVID-19 related time series information and Google search data, our method is able to robustly capture new COVID-19 variants' surges, and self-correct at both national and state level. Based on our retrospective out-of-sample evaluation over 12-month comparison period, our method achieves on average 15% error reduction over the best alternative models collected from COVID-19 forecast hub. Overall, we showed that our method is flexible, self-correcting, robust, accurate, and interpretable, making it a potentially powerful tool to assist health-care officials and decision making for the current and future infectious disease outbreak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.