In recent times, with the development of science and technology, new technologies have been rapidly emerging, and innovators are making efforts to acquire intellectual property rights to preserve their competitive advantage as well as to enhance innovative competitiveness. As a result, the number of patents being acquired increases exponentially every year, and the social and economic ripple effects of developed technologies are also increasing. Now, innovators are focusing on evaluating existing technologies to develop more valuable ones. However, existing patent analysis studies mainly focus on discovering core technologies amongst the technologies derived from patents or analyzing trend changes for specific techniques; the analysis of innovators who develop such core technologies is insufficient. In this paper, we propose a model for analyzing the technical inventions of applicants based on patent classification systems such as international patent classification (IPC) and cooperative patent classification (CPC). Through the proposed model, the common invention patterns of applicants are extracted and used to analyze their technical inventions. The proposed model shows that patent classification systems can be used to extract the trends in applicants’ technological inventions and to track changes in their innovative patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.