In nature, pollen grains play a vital role for encapsulation. Many pollen species exist which are often used as human food supplements. Dynamic image particle analysis, scanning electron microscopy, and confocal microscopy analysis confirmed the size, structural uniformity, and macromolecular encapsulation in sunflower pollen, paving the way to explore natural pollen grains for the encapsulation of therapeutic molecules.
Pollen's practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success.
In recent years, certain amphipathic, α-helical peptides have been discovered that inhibit medically important enveloped viruses by disrupting the lipid membrane surrounding individual virus particles. Interestingly, only a small subset of amphipathic, α-helical peptides demonstrate inhibitory activity, and there is broad interest in understanding how the structures of these peptides contribute to functional activity against lipid membranes. To address this question, herein, we employed multiple surface-sensitive measurement techniques along with computational simulations in order to investigate how AH and C5A peptides, two of the most biologically active peptides in this class, interact with model lipid membranes while gaining insight into membrane-induced peptide conformational changes. Circular dichroism spectroscopy experiments revealed that both AH and C5A peptides undergo pronounced coil-to-helix transitions in the presence of lipid membrane environments, and the C5A conformational change was the largest. Time-lapsed fluorescence microscopy measurements were conducted to monitor the interaction of peptides with arrays of tethered, individual lipid vesicles and showed that C5A potently lyses lipid vesicles indiscriminate of vesicle size at peptide concentrations as low as 10 nM whereas AH peptide preferentially lyses lipid vesicles with high membrane curvature and is less potent than C5A. These findings were complemented by electrochemical impedance spectroscopy measurements on a tethered lipid bilayer membrane platform, which indicated that C5A solubilizes lipid membranes in a manner that is distinct from how AH disrupts lipid membranes via pore formation. Computational simulations supported that the distinct membrane-interaction profiles arise from different helical folding patterns, whereby AH monomers predominantly exist as two shorter helices with a hinge in-between and C5A monomers form a single helix. Taken together, our findings demonstrate that membrane-active antiviral peptides can exhibit distinct membrane-interaction profiles that confer different degrees of targeting selectivity, and the corresponding structural insights will be useful for peptide engineering applications.
The deposition of two-dimensional bicellar disks on hydrophilic surfaces is an emerging approach to fabricate supported lipid bilayers (SLBs) that requires minimal sample preparation, works at low lipid concentrations, and yields highquality SLBs. While basic operating steps in the fabrication protocol mimic aspects of the conventional vesicle fusion method, lipid bicelles and vesicles have distinct architectural properties, and understanding how experimental parameters affect the efficiency of bicelle-mediated SLB formation remains to be investigated. Herein, using the quartz crystal microbalancedissipation and localized surface plasmon resonance techniques, we investigated the effect of bulk NaCl concentration on bicelle-mediated SLB formation on silicon dioxide surfaces. For comparison, similar experiments were conducted with vesicles as well. In both cases, SLB formation was observed to occur rapidly provided that the NaCl concentration was sufficiently high (>50 mM). Under such conditions, the effect of NaCl concentration on SLB formation was minor in the case of bicelles and significant in the case of vesicles where it is expected to be related primarily to osmotic pressure. At lower NaCl concentrations, bicelles also formed SLBs but slowly, whereas adsorbed vesicles remained intact. These findings were complemented by timelapsed fluorescence microscopy imaging and fluorescence recovery after photobleaching measurements that corroborated bicelle-mediated SLB formation across the range of tested NaCl concentrations. The results are discussed by comparing the architectural properties of bicelles and vesicles along with theoretical analysis of the corresponding adsorption kinetics.
Supported lipid bilayers (SLBs) are simplified model membrane systems that mimic the fundamental properties of biological cell membranes and allow the surface-sensitive tools to be used in numerous sensing applications. SLBs can be prepared by various methods including vesicle fusion, solvent-assisted lipid bilayer (SALB), and bicelle adsorption and are generally composed of phospholipids. Incorporating other biologically relevant molecules, such as cholesterol (Chol), into SLBs has been reported with the vesicle fusion and SALB methods, whereas it remains unexplored with the bicelle absorption method. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and fluorescence microscopy techniques, we explored the possibility of forming SLBs from Chol-containing bicelles and discovered that Chol-enriched SLBs can be fabricated with bicelles. We also compared the Chol-enriched SLB formation of the bicelle method to that of vesicle fusion and SALB and discussed how the differences in lipid assembly properties can cause the differences in the adsorption kinetics and final results of SLB formation. Collectively, our findings demonstrate that the vesicle fusion method is least favorable for forming Chol-enriched SLBs, whereas the SALB and bicelle methods are more favorable, highlighting the need to consider the application requirements when choosing a suitable method for the formation of Chol-enriched SLBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.