We report the first direct observation of an exceptional point (EP) in an open quantum composite of a single atom and a high-Q cavity mode. The atom-cavity coupling constant was made a continuous variable by utilizing the multisublevel nature of a single rubidium atom when it is optimally coupled to the cavity mode. The spectroscopic properties of quasieigenstates of the atom-cavity composite were experimentally investigated near the EP. Branch-point singularity of quasieigenenergies was observed and its 4pi symmetry was demonstrated. Consequently, the cavity transmission at the quasieigenstate was observed to exhibit a critical behavior at the EP.
We have investigated the spectral broadening in the near-resonance fluorescence spectrum of a single rubidium atom trapped in a three-dimensional (3D) optical lattice in a strong Lamb-Dicke regime. Besides the strong Rayleigh peak, the spectrum exhibited weak Stokes and anti-Stokes Raman sidebands. The line width of the Rayleigh peak for low potential depths was well explained by matter-wave tunneling between the first-two lowest vibrational states of 3D anisotropic harmonic potentials of adjacent local minima of the optical lattice.
We have demonstrated high-speed controlled generation of single photons in a coupled atom-cavity system. A single 85Rb atom, pumped with a nanosecond-pulse laser, generates a single photon into the cavity mode, and the photon is then emitted out the cavity rapidly. By employing cavity parameters for a moderate coupling regime, the single-photon emission process was optimized for both high efficiency and fast bit rates up to 10 MHz. The temporal single-photon wave packet was studied by means of the photon-arrival-time distribution relative to the pump pulse and the efficiency of the single-photon generation was investigated as the pump power. The single-photon nature of the emission was confirmed by the second-order correlation of emitted photons.
Atom-cavity coupling constant is a key parameter in cavity quantum electrodynamics for describing the interaction between an atom and a quantized electromagnetic field in a cavity. This paper reports a novel way to tune the coupling constant continuously by inducing an averaging of the atomic dipole moment over degenerate magnetic sublevels with elliptic polarization of the cavity field. We present an analytic solution of the stationary-state density matrix for this system with consideration of F -> F +1 hyperfine transition under a weak excitation condition. We rigorously show that the stationary-state emission spectra of this system can be approximated by that of a non-degenerate two-level atom with an effective coupling constant as a function of the elliptic angle of the cavity field only. A precise condition for this approximation is derived and its physical meaning is interpreted in terms of a population-averaged transition strength and its variance. Our results can be used to control the coupling constant in cavity quantum electrodynamics experiments with a degenerate two-level atom with magnetic sublevels. Possible applications of our results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.