A facile and ultrafast method for geometry controllable and vertically transformative 3D graphene architectures is demonstrated. The 2D stacked graphene layers produced by exfoliation of graphite were transformed, e.g., from horizontal to vertical, by applying electric charge (-2 V with 1-3 μAh/cm2). The three-dimensionally transformed graphene layers have maximized surface area as well as high specific capacitance, 410 F g(-1) in LiClO4/PC electrolyte, which is 4.4 times higher than that of planar (stacked) graphene layers. Furthermore, they can remarkably exhibit 87% of retained capacitance as the scan rate is increased from 100 to 1000 mV s(-1), unlike planar graphene, which displays 61% retention under the same conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.