There is a need for effective wound healing through rapid wound closure, reduction of scar formation, and acceleration of angiogenesis. Hydrogel is widely used in tissue engineering, but it is not an ideal solution because of its low vascularization capability and poor mechanical properties. In this study, gelatin methacrylate (GelMA) was tested as a viable option with tunable physical properties. GelMA hydrogel incorporating a vascular endothelial growth factor (VEGF) mimicking peptide was successfully printed using a three-dimensional (3D) bio-printer owing to the shear-thinning properties of hydrogel inks. The 3D structure of the hydrogel patch had high porosity and water absorption properties. Furthermore, the bioactive characterization was confirmed by cell culture with mouse fibroblasts cell lines (NIH 3T3) and human umbilical vein endothelial cells. VEGF peptide, which is slowly released from hydrogel patches, can promote cell viability, proliferation, and tubular structure formation. In addition, a pig skin wound model was used to evaluate the wound-healing efficacy of GelMA-VEGF hydrogel patches; the results suggest that the GelMA-VEGF hydrogel patch can be used for wound dressing.
Superoxide, NO, and peroxynitrite are involved in renal I/R injury. The reduction of peroxynitrite formation, via inhibition of superoxide or NO, or the induction of peroxynitrite decomposition may be beneficial in renal I/R injury.
Purpose To establish an optimized and standardized protocol for the development of optimal scaffold for bioengineering corneal substitutes, we used femtosecond laser to process human corneal tissue into stromal lenticules and studied to find the most efficient decellularization method among various reagents with different tonicities. Methods The decellularization efficacy of several agents (0.1%, 0.25%, and 0.5% of Triton X-100, SDS, and trypsin-EDTA (TE), resp.) with different tonicities was evaluated. Of all protocols, the decellularization methods, which efficiently removed nuclear materials examined as detected by immunofluorescent staining, were quantitatively tested for sample DNA and glycosaminoglycan (GAG) contents, recellularization efficacy, and biocompatibilities. Results 0.5% SDS in hypertonic and isotonic buffer, 0.25% TE in hypotonic buffer, and 0.5% TE in all tonicities completely decellularized the corneal lenticules. Of the protocols, decellularization with hypotonic 0.25 and 0.5% TE showed the lowest DNA contents, while the GAG content was the highest. Furthermore, the recellularization efficacy of the hypotonic TE method was better than that of the SDS-based method. Hypotonic TE-treated decellularized corneal lenticules (DCLs) were sufficiently transparent and biocompatible. Conclusion We generated an ideal protocol for DCLs using a novel method. Furthermore, it is possible to create a scaffold using a bioengineered corneal substitute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.