Secreted protein acidic and rich in cysteine (SPARC) is an extracellular Ca(2+)-binding matricellular glycoprotein that associates with cell populations undergoing migration, morphogenesis, and differentiation. Studies on endothelial cells have established that its principal functions in vitro are counteradhesion and antiproliferation. The mechanism(s) underlying these antitumor effects is unknown. In this study, we showed that SPARC expression in ovarian cancer cells is inversely correlated with the degree of malignancy. The immunohistochemical data presented here confirmed the importance of diminished SPARC expression in ovarian cancer development. Treating human ovarian surface epithelial cells and ovarian cancer cells with SPARC revealed that as SPARC inhibits the proliferation of both normal and cancer cells, it induces apoptosis only in cancer cells. This observation indicates that down-regulation of SPARC is essential for ovarian carcinogenesis as cancer cells become sensitized to the apoptotic activity of SPARC during malignant transformation. We also showed here the first direct evidence that putative SPARC receptors are present on ovarian epithelial cells. Their levels are higher in human ovarian surface epithelial cells than cancer cells. Binding of SPARC to its receptor is likely to trigger tissue-specific signaling pathways that mediate its tumor suppressing functions. Decrease in ligand-receptor interaction by the down-regulation of SPARC and/or its receptor is essential for ovarian carcinogenesis.
Using RNA ®ngerprinting (RAP) strategy and Northern blot analysis, we identi®ed a di erentially expressed sequence DOC-2 which is detectable in all normal human ovarian surface epithelial (HOSE) cell cultures but not in ovarian cancer cell lines and tissues. Subsequent cloning of DOC-2 from a cDNA library generated from the HOSE cells was carried out using the 3' and 5' RACE approach. A 3268 base pair full length cDNA of DOC-2 was isolated and sequenced. The predicted protein has a length of 770 amino acids. Homology search of all NCBI sequences indicated that the amino acid sequence of DOC-2 shares 93% homology with the mouse p96/ mDab2 phosphoprotein and has a phosphotyrosine interacting domain (PID) and multiple SH3 binding motifs. Chromosomal localization by FISH showed that the DOC-2 gene is located on 5p13. Western blot analysis showed that the 105 kDa DOC-2 protein was down-regulated in all the carcinoma cell lines. In-situ immunohistochemistry performed on normal ovaries, and benign, borderline and invasive ovarian tumor tissues showed down regulation of DOC-2 protein particularly in serous ovarian tumor tissues. When DOC-2 was transfected into the ovarian carcinoma cell line SKOV3, the stable transfectants showed signi®cantly reduced growth rate and ability to form tumors in nude mice. These data suggest that down-regulation of DOC-2 may play an important role in ovarian carcinogenesis.
Selenium binding protein 1 (SELENBP1) was identified to be the most significantly down-regulated protein in ovarian cancer cells by a membrane proteome profiling analysis. SELENBP1 expression levels in 4 normal ovaries, 8 benign ovarian tumors, 12 borderline ovarian tumors and 141 invasive ovarian cancers were analyzed with immunohistochemical assay. SELENBP1 expression was reduced in 87% cases of invasive ovarian cancer (122/141) and was significantly reduced in borderline tumors and invasive cancers (p < 0.001). Cox multivariate analysis within the 141 invasive cancer tissues showed that SELENBP1 expression score was a potential prognostic indicator for unfavorable prognosis of ovarian cancer (hazard ratio [HR], 2.18; 95% CI 5 1.22-3.90; p 5 0.009). Selenium can disrupt the androgen pathway, which has been implicated in modulating SELENBP1 expression. We investigated the effects of selenium and androgen on normal human ovarian surface epithelial (HOSE) cells and cancer cells. Interestingly, SELENBP1 mRNA and protein levels were reduced by androgen and elevated by selenium treatment in the normal HOSE cells, whereas reversed responses were observed in the ovarian cancer cell lines. These results suggest that changes of SELENBP1 expression in malignant ovarian cancer are an indicator of aberration of selenium/androgen pathways and may reveal prognostic information of ovarian cancer. ' 2005 Wiley-Liss, Inc.Key words: ovarian cancer; membrane proteome profiling; 2-D PAGE; selenium binding protein 1; prognostic marker; androgen; methylselenocysteine Despite advances in cancer therapeutic agents in recent years, approximately 14,000 women still die of ovarian cancer each year in the United States, making it the most lethal of the gynecological malignancies. 1 Currently, surgical debulking followed by chemotherapy is the major treatment approach for ovarian cancer. Most cases of ovarian cancer are diagnosed at advanced stages when the prognosis for 5-year survival is poor. 2 Developing new diagnostic technique and improving current therapeutic strategy are the main directions to fight this morbid disease.Multiple genomic and proteomic approaches have been applied to identify disease-associated biomarkers for diagnosis and disease management. Applying cDNA and oligo microarray technology have enabled scientists to look into the global differences in gene expression between normal and cancer cells. 3 For proteomic approaches, two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) followed by protein identification using mass spectrometry has been the primary technique for biomarker discovery. 4,5 Membrane-associated proteins have been suggested to be a potential resource for biomarker screening. 6 In our pilot study of the use of 2-D PAGE to profile membrane-associated proteins of normal ovarian surface epithelial cells and ovarian cancer cell lines, selenium binding protein 1 (SELENBP1) was identified as the most significantly down-regulated protein in the cancer cells.The human selenium binding protein gene (...
BACKGROUND Endometriosis is frequently associated with and thought of having propensity to develop into ovarian clear cell carcinoma (OCCC), although the molecular transformation mechanism is not completely understood. METHODS We employed immunohistochemical (IHC) staining for marker expression along the potential progression continuum. Expression profiling of microdissected endometriotic and OCCC cells from patient-matched formalin-fixed, paraffin-embedded samples was performed to explore the carcinogenic pathways. Function of novel biomarkers was confirmed by knockdown experiments. RESULTS PTEN was significantly lost in both endometriosis and invasive tumor tissues, while estrogen receptor (ER) expression was lost in OCCC relative to endometriosis. XRCC5, PTCH2, eEF1A2, and PPP1R14B were significantly overexpressed in OCCC and associated endometriosis, but not in benign endometriosis (p≤0.004). Knockdown experiments with XRCC5 and PTCH2 in a clear cell cancer cell line resulted in significant growth inhibition. There was also significant silencing of a panel of target genes with histone H3 lysine 27 trimethylation, a signature of polycomb chromatin-remodeling complex in OCCC. IHC confirmed the loss of expression of one such polycomb target gene, the serous ovarian cancer lineage marker WT1 in OCCC, while endometriotic tissues showed significant co-expression of WT1 and ER. CONCLUSIONS Loss of PTEN expression is proposed as an early and permissive event in endometriosis development, while the loss of ER and polycomb-mediated transcriptional reprogramming for pluripotency may play an important role in the ultimate transformation process. Our study provides new evidence to redefine the pathogenic program for lineage-specific transformation of endometriosis to OCCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.