Summary:Purpose: Early-life seizures increase vulnerability to subsequent neurologic insult. We tested the hypothesis that early-life seizures increase susceptibility to later neurologic injury by causing chronic glial activation. To determine the mechanisms by which glial activation may modulate neurologic injury, we examined both acute changes in proinflammatory cytokines and long-term changes in astrocyte and microglial activation and astrocyte glutamate transporters in a "two-hit" model of kainic acid (KA)-induced seizures.Methods: Postnatal day (P) 15 male rats were administered KA or phosphate buffered saline (PBS). On P45 animals either received a second treatment of KA or PBS. On P55, control (PBS-PBS), early-life seizure (KA-PBS), adult seizure (PBS-KA), and "two-hit" (KA-KA) groups were examined for astrocyte and microglial activation, alteration in glutamate transporters, and expression of the glial protein, clusterin.Results: P15 seizures resulted in an acute increase in hippocampal levels of IL-1β and S100B, followed by behavioral impairment and long-term increases in GFAP and S100B. Animals in the "two-hit" group showed greater microglial activation, neurologic injury, and susceptibility to seizures compared to the adult seizure group. Glutamate transporters increased following seizures but did not differ between these two groups. Treatment with Minozac, a small molecule inhibitor of proinflammatory cytokine upregulation, following early-life seizures prevented both the long-term increase in activated glia and the associated behavioral impairment.Conclusions: These data suggest that glial activation following early-life seizures results in increased susceptibility to seizures in adulthood, in part through priming microglia and enhanced microglial activation. Glial activation may be a novel therapeutic target in pediatric epilepsy.
Depression is the most common psychiatric comorbidity in epilepsy. To better understand the contribution of seizures versus environment to depression in epilepsy, we investigated differential gene expression using microarray and quantitative RT-PCR, and depressive behavior, in the Porsolt forced swim test in juvenile rats reared in different environments after kainic acid (KA)-induced seizures. We selected for genes significantly down-regulated by KA seizures and upregulated by environmental enrichment. This common gene selection process yielded one known gene involved in mood and affect: serotonin receptor 5B. The changes in serotonin receptor gene expression were paralleled by decreased mobility in the forced swim tests; depressive behavior exhibited after seizures was no longer evident in rats reared in environmental enrichment. Our results suggest that seizures lead to increased susceptibility to depression through transcriptional regulation while environment, in turn, can interact with gene expression to influence the behavioral outcome of epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.