Heart sounds and heart rate (pulse) are the most common physiological signals used in the diagnosis of cardiovascular diseases. Measuring these signals using a device and analyzing their interrelationships simultaneously can improve the accuracy of existing methods and propose new approaches for the diagnosis of cardiovascular diseases. In this study, we have presented a novel smart stethoscope based on multimodal physiological signal measurement technology for personal cardiovascular health monitoring. The proposed device is designed in the shape of a compact personal computer mouse for easy grasping and attachment to the surface of the chest using only one hand. A digital microphone and photoplehysmogram sensor are installed on the bottom and top surfaces of the device, respectively, to measure heart sound and pulse from the user’s chest and finger simultaneously. In addition, a high-performance Bluetooth Low Energy System-on-Chip ARM microprocessor is used for pre-processing of measured data and communication with the smartphone. The prototype is assembled on a manufactured printed circuit board and 3D-printed shell to conduct an in vivo experiment to test the performance of physiological signal measurement and usability by observing users’ muscle fatigue variation.
A sudden cardiac event in patients with heart disease can lead to a heart attack in extreme cases. Therefore, prompt interventions for the particular heart situation and periodic monitoring are critical. This study focuses on a heart sound analysis method that can be monitored daily using multimodal signals acquired with wearable devices. The dual deterministic model-based heart sound analysis is designed in a parallel structure that uses two bio-signals (PCG and PPG signals) related to the heartbeat, enabling more accurate heart sound identification. The experimental results show promising performance of the proposed Model III (DDM-HSA with window and envelope filter), which had the highest performance, and S1 and S2 showed average accuracy (unit: %) of 95.39 (±2.14) and 92.55 (±3.74), respectively. The findings of this study are anticipated to provide improved technology to detect heart sounds and analyze cardiac activities using only bio-signals that can be measured using wearable devices in a mobile environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.