SummaryAcinetobacter baumannii is an important opportunistic pathogen responsible for nosocomial infection. Despite considerable clinical and epidemiological data regarding the role of A. baumannii in nosocomial infection, the specific virulence factor or pathogenic mechanism of this organism has yet to be elucidated. This study investigated the molecular mechanism of apoptosis on the infection of human laryngeal epithelial HEp-2 cells with A. baumannii and examined the contribution of outer membrane protein 38 (Omp38) on the ability of A. baumannii to induce apoptosis of epithelial cells. A. baumannii induced apoptosis of HEp-2 cells through cell surface death receptors and mitochondrial disintegration. The Omp38-deficient mutant was not as able to induce apoptosis as the wild-type A. baumannii strain. Purified Omp38 entered the cells and was localized to the mitochondria, which led to a release of proapoptotic molecules such as cytochrome c and apoptosis-inducing factor (AIF). The activation of caspase-3, which is activated by caspase-9, degraded DNA approximately 180 bp in size, which resulted in the appearance of a characteristic DNA ladder. AIF degraded chromosomal DNA approximately 50 kb in size, which resulted in largescale DNA fragmentation. These results demonstrate that Omp38 may act as a potential virulence factor to induce apoptosis of epithelial cells in the early stage of A. baumannii infection.
SummaryAcinetobacter baumannii is an emerging opportunistic pathogen responsible for healthcare-associated infections. The outer membrane protein A of A. baumannii (AbOmpA) is the most abundant surface protein that has been associated with the apoptosis of epithelial cells through mitochondrial targeting. The nuclear translocation of AbOmpA and the subsequent pathology on host cells were further investigated. AbOmpA directly binds to eukaryotic cells. AbOmpA translocates to the nucleus by a novel monopartite nuclear localization signal (NLS). The introduction of rAbOmpA into the cells or a transient expression of AbOmpA-EGFP causes the nuclear localization of these proteins, while the fusion proteins of AbOmpADNLS-EGFP and AbOmpA with substitutions in residues lysine to alanine in the NLS sequences represent an exclusively cytoplasmic distribution. The nuclear translocation of AbOmpA induces cell death in vitro. Furthermore, the microinjection of rAbOmpA into the nucleus of Xenopus laevis embryos fails to develop normal embryogenesis, thus leading to embryonic death. We propose a novel pathogenic mechanism of A. baumannii regarding the nuclear targeting of the bacterial structural protein AbOmpA.
Background
Neisseria meningitidis (Nm) is a leading causative agent of bacterial meningitis in humans. Traditionally, meningococcal meningitis has been diagnosed by bacterial culture. However, isolation of bacteria from patients’ cerebrospinal fluid (CSF) is time consuming and sometimes yields negative results. Recently, polymerase chain reaction (PCR)-based diagnostic methods of detecting Nm have been considered the gold standard because of their superior sensitivity and specificity compared with culture. In this study, we developed a loop-mediated isothermal amplification (LAMP) method and evaluated its ability to detect Nm in cerebrospinal fluid (CSF).Methodology/Principal FindingsWe developed a meningococcal LAMP assay (Nm LAMP) that targets the ctrA gene. The primer specificity was validated using 16 strains of N. meningitidis (serogroup A, B, C, D, 29-E, W-135, X, Y, and Z) and 19 non-N. meningitidis species. Within 60 min, the Nm LAMP detected down to ten copies per reaction with sensitivity 1000-fold more than that of conventional PCR. The LAMP assays were evaluated using a set of 1574 randomly selected CSF specimens from children with suspected meningitis collected between 1998 and 2002 in Vietnam, China, and Korea. The LAMP method was shown to be more sensitive than PCR methods for CSF samples (31 CSF samples were positive by LAMP vs. 25 by PCR). The detection rate of the LAMP method was substantially higher than that of the PCR method. In a comparative analysis of the PCR and LAMP assays, the clinical sensitivity, specificity, positive predictive value, and negative predictive value of the LAMP assay were 100%, 99.6%, 80.6%, and 100%, respectively.Conclusions/SignificanceCompared to PCR, LAMP detected Nm with higher analytical and clinical sensitivity. This sensitive and specific LAMP method offers significant advantages for screening patients on a population basis and for diagnosis in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.