Background
Glucocorticoid resistance has been associated with Th17-driven inflammation, the mechanisms of which are not clear. We determined whether human and mouse Th17 cells are resistant to glucocorticoid-induced apoptosis.
Methods
Freshly isolated human blood Th17 cells and in vitro differentiated Th17 cells from IL-17F red fluorescent protein reporter mice were treated with dexamethasone, a potent glucocorticoid. Apoptosis was measured using annexin V and DAPI staining. Screening of apoptosis genes was performed using the apoptosis PCR array. Levels of molecules involved in apoptosis were measured using quantitative RT-PCR, flow cytometry, and Western blotting. Knockdown of BCL-2 in murine Th17 cells was performed via retroviral transduction. Cytokines were measured using ELISA. A murine Th17-driven severe asthma model was examined for Th17 glucocorticoid sensitivity in vivo.
Results
Human and mouse Th17 cells and mouse Th2 cells were resistant to glucocorticoid-induced apoptosis. Th17 cells had glucocorticoid receptors levels comparable to those in other T effectors cells. Th17 cells had high levels of BCL-2, knockdown of which sensitized Th17 cells to dexamethasone-induced apoptosis. Production of IL-22, but not IL-17A and IL-17F, was suppressed by glucocorticoids. STAT3 phosphorylation in Th17 cells was insensitive to glucocorticoid inhibition. Lung Th17 cells in the murine severe asthma model were enhanced, rather than suppressed, by glucocorticoids.
Conclusion
Th17 cells are resistant to glucocorticoid-induced apoptosis and cytokine suppression, at least in part due to high levels of BCL-2. These findings support a role of Th17 cells in glucocorticoid-resistant inflammatory conditions such as certain endotypes of asthma.
• Mature, but not immature, dendritic cells are sensitive to glucocorticoid-induced apoptosis.• Mature, but not immature, dendritic cells express proapoptotic glucocorticoid receptor translational isoforms.
Th17 cells contribute to several inflammatory conditions and increasing evidence supports that Th17 cells are glucocorticoid resistant. However, Th17 cells in psoriasis and related diseases are glucocorticoid sensitive. We compare glucocorticoid sensitive and resistant immunological diseases and suggest that several aspects in Th-17 related diseases alter glucocorticoid sensitivity of Th17 cells. We identify molecular pathways that are implicated in glucocorticoid sensitivity of Th17 cells in the literature, as this information is useful for developing approaches to overcome glucocorticoid-resistant immunopathology.
Previous reports suggest that plasminogen activator inhibitor-1 (PAI-1) promotes airway remodeling and that human and mouse mast cells (MCs) are an important source of PAI-1. In the present study we investigated MC-epithelial cell (EC) interactions in the production of PAI-1. We stimulated the human MC line LAD2 with IgE-receptor cross-linking and collected the supernatants. We incubated the human bronchial EC line BEAS-2B with the LAD2 supernatants and measured the level of PAI-1. When the supernatants from IgE-stimulated LAD2 were added to BEAS-2B, there was a significant enhancement of PAI-1 production by BEAS-2B. When we treated the MC supernatants with a transforming growth factor (TGF)-b1 neutralizing antibody, the MC-derived induction of PAI-1 from BEAS-2B was completely abrogated. Although TGF-b1 mRNA was constitutively expressed in resting LAD2, it was not highly induced by IgE-mediated stimulation. Nonetheless, active TGF-b1 protein was significantly increased in LAD2 after IgE-mediated stimulation. Active TGF-b1 produced by primary cultured human MCs was significantly reduced in the presence of a chymase inhibitor, suggesting a role of MC chymase as an activator of latent TGF-b1. This study indicates that stimulation of human MCs by IgE receptor cross-linking triggers activation of TGF-b1, at least in part via chymase, which in turn induces the production of PAI-1 by bronchial ECs. Our data suggest that human MCs may play an important role in airway remodeling in asthma as a direct source of PAI-1 and by activating bronchial ECs to produce further PAI-1 via a TGF-b1-mediated activation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.