The main objective of this work is to improve the physical properties of lyophilized calcium (Ca)-alginate beads as a carrier material for the stabilization of encapsulated living cells. Improvements in the sphericity, flowability and mechanical strength of the dried beads were attributed to the filler, which provided structure and reinforcement to the Ca-alginate hydrogel networks, as verified by X-ray microtomography and scanning electron microscopy. A quantitative analysis of the micro-images revealed the less porous nature of the alginate-starch beads compared to the control. The beads with filler were also found to be less hygroscopic. The results also show that the cells encapsulated within the beads with reduced porosity and hygroscopicity were clearly more stable during lyophilization and storage than the control. In conclusion, the qualities of the alginate beads were improved by incorporating the solid filler, and the filler had a significant influence on cell viability during lyophilization and storage.
Encapsulation of herbal aqueous extract through absorption with ca-alginate hydrogel beads was studied. A model herbal aqueous extract, Piper sarmentosum, was used in this study. The effect of process variables (i.e. alginate M/G ratio, alginate concentration, extract concentration, bead size and bead water content) on encapsulation efficiency and biochemical compounds stability were studied. The stability of biochemical compounds was evaluated by using mass balance analysis and FT-IR spectroscopy. The results show that the encapsulation efficiency was mainly affected by alginate M/G ratio and bead water content. In general, ca-alginate beads made of higher alginate M/G ratio or dried to a lower water content were found to absorb significantly more aqueous extract. However, the beads made of higher M/G ratio were less rigid after the absorption process. Besides, the mass balance analysis reveals that the encapsulation process and material did not degrade the bioactive compounds, as the total antioxidant content remained unchanged. This is well supported by the FT-IR analysis where the characteristic bands of chemical groups remained unaltered. Interestingly, the beads made of lower alginate M/G ratio were found to have higher antioxidant affinity. In conclusion, this study demonstrates the potential of using absorption process and hydrogel material for encapsulation of herbal aqueous extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.