Traditionally, many irrigation ponds supplied water to paddy fields, but most of these ponds have disappeared through improvements in irrigation systems. The aim of this study was to assess the ecological functions (especially biodiversity conservation) of irrigation ponds by using benthic macroinvertebrates that inhabit paddy fields. This study was conducted in Hwaseong‐si, Yesan‐gun, Hongseong‐gun, Uljin‐gun and Damyang‐gun, Korea. Benthic macroinvertebrates were collected using a quadrat sampler from August to September for three years (2010–2012) in paddy fields with and without an irrigation pond. In the comparisons between two paddy field types (paddy fields with and without an irrigation pond) for species richness and densities of benthic macroinvertebrates, the species richness and densities were higher in the paddy fields with a pond than in the paddy fields without a pond (P < 0.001). Biodiversity enhancement effect degree (BEED) of the irrigation pond showed positive values in all survey regions. There were no significant differences among the survey regions. BEED showed positive values in all taxonomic groups (excluding Crustacea) and were not significantly different among taxonomic groups. The BEED values for non‐insects, passive dispersers, were relatively higher than for insects, active dispersers. The results indicate that BEED is related to the dispersal abilities of each taxonomic group and an irrigation pond increases biodiversity in a paddy field in all regions. Therefore, the irrigation pond is one method that can be immediately applied in paddy fields in order to improve the biodiversity of agricultural ecosystems.
Granite‐derived soils are widespread in the farmland of Korea in general. In contrast, Jeju Island has mainly volcanic ash soils. Soils and weather condition in Jeju Island created a unique agricultural system. We identified the features of ground‐dwelling insects in farmlands of Jeju Island. This study was conducted in four areas (Samdal‐ri and Susan‐ri in Seogwipo city, and Dongmyeong‐ri and Suwon‐ri in Jeju city) in Jeju Island, Korea. Field surveys were carried out twice in summer (June) and autumn (September) in 2013. Ground‐dwelling insects were sampled quantitatively by using pitfall traps. As a result, in total 3322 individuals, 137 species, 48 families and 8 orders were investigated in farmlands of Jeju Island. Especially, members of Coleoptera and Hymenoptera accounted for a large proportion of ground‐dwelling insect communities. The numbers of species and individuals for major taxonomic groups showed significant regional and seasonal differences. This study implied that the seasonal and regional differences of ground‐dwelling insect communities were affected by surrounding land use patterns, life history patterns of each taxonomic group and farmland management.
Soil organic carbon (SOC) of soil series is necessary to calculate soil C sequestration due to IPCC default categorized by climate regions and by soil types. The 3,400 thousand data were downloaded from agricultural soil information system and analyzed to get averages of soil order, soil series, and textual family for the three different soil management practices in Korea. in orchard soil, respectively. The fact that soils containing greater clay content in textual family had also more SOC content revealed that SOC could be also dependent on some soil properties as well as soil order. Because SOC differences among soil series representing same textual family were greater than those among textual family, SOC differences should be mainly affected by management practices such as compost application.
This study aimed to evaluate the nutrient load balance from rice paddy fields with different topographies, alluvial plain and local valley. Continuous monitoring from May to September, 2013 was conducted for water quantification and qualification from alluvial plain in Yeoju region (32 ha) and local valley in Jincheon region (24 ha). The discharge rates of T-N from the alluvial plain were 57.2, 5.84, 22.7, and 5.20 kg ha -1 for irrigation, precipitation, drainage, and percolation, respectively. In case of local valley, T-N loads were 34.6, 4.73, 21.1, and 4.15 kg ha -1 for irrigation, precipitation, drainage, and percolation, respectively. In contrary, the T-P loads from the alluvial plain were 2.23, 2.22, 2.54, and 0.41 kg ha -1 for irrigation, precipitation, drainage, and percolation, respectively. In case of local valley, T-P loads were 1.44, 1.57, 1.82, and 0.34 kg ha -1 for irrigation, precipitation, drainage, and percolation, respectively. The nutrient contents in drainage water were influenced by the amount of waters, rainfall, and surface drainage water. The Pearson correlation analysis showed that rainfall was significantly correlated with nutrient loads from July to August due to the amount of runoff in local valley paddy field, and irrigation was related with nutrient loads of drainage from July to August. This study showed that paddy rice farming in alluvial plain and local valley might be beneficial to water quality protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.