Remsima® (infliximab) was recently approved as the world's first biosimilar monoclonal antibody (mAb) in both the European Union and Korea. To achieve this, extensive physicochemical characterization of Remsima® in relation to Remicade® was conducted in order to demonstrate the highly similar properties between the two molecules. A multitude of state-of-the-art analyses revealed that Remsima® has identical primary as well as indistinguishable higher order structures compared with the original product. Monomer and aggregate contents of Remsima® were also found to be comparable with those of Remicade®. In terms of charge isoforms, although Remsima® was observed to contain slightly less basic variants than the original antibody, the difference was shown to be largely due to the presence of C-terminal lysine. On the other hand, this lysine was found to be rapidly clipped inside serum in vitro and in vivo, suggesting it has no effect on the biological potency or safety of the drug. Analysis of the glycan contents of the antibodies showed comparable glycan types and distributions. Recent results of clinical studies have further confirmed that the two antibody products are highly similar to each other. Based on this research as well as previous clinical and non-clinical comparability studies, Remsima® can be considered as a highly similar molecule to Remicade® in terms of physicochemical properties, efficacy, and safety for its final approval as a biosimilar product to Remicade®.
CT-P10 (Truxima™) was recently approved as the world's first rituximab biosimilar product in the European Union (EU) and South Korea. To demonstrate biosimilarity of CT-P10 with the reference medicinal product (RMP), extensive 3-way similarity assessment has been conducted between CT-P10, EU-Rituximab and US-Rituximab, focusing on the physicochemical and biological quality attributes. A multitude of state-of-the-art analyses revealed that CT-P10 has identical primary and higher order structures compared to the original product. Purity/impurity profiles of CT-P10 measured by the levels of aggregates, fragments, non-glycosylated form and process-related impurities were also found to be comparable with those of RMPs. In terms of the post-translational modification, CT-P10 contains slightly less N-terminal pyro-glutamate variant, which has been known not to affect product efficacy or safety. Oligosaccharide profiling has revealed that, although CT-P10 contains the same conserved glycan species and relative proportion with the RMPs, the content of total afucosylated glycan in CT-P10 was slightly higher than in EU- or US-Rituximab. Nevertheless, the effect of the observed level of afucosylation in CT-P10 drug product on Fc receptor binding affinity or antibody-dependent cell-mediated cytotoxicity was found to be negligible based on the spiking study with highly afucosylated sample. Arrays of biological assays representative of known and putative mechanisms of action for rituximab have shown that biological activities of CT-P10 are within the quality range of RMPs. Recent results of clinical studies have further confirmed that the CT-P10 exhibits equivalent clinical efficacy and safety profiles compared to EU- and US-Rituximab. The current 3-way similarity assessment together with clinical study results confidently demonstrate that CT-P10 is highly similar with EU- and US-Rituximab in terms of physicochemical properties, biological activities, efficacy, and safety for its final approval as a biosimilar product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.