Background Successful chemoprevention or chemotherapy is achieved through targeted delivery of prophylactic agents during initial phases of carcinogenesis or therapeutic agents to malignant tumors. Bacteria can be used as anticancer agents, but efforts to utilize attenuated pathogenic bacteria suffer from the risk of toxicity or infection. Lactic acid bacteria are safe to eat and often confer health benefits, making them ideal candidates for live vehicles engineered to deliver anticancer drugs. Results In this study, we developed an effective bacterial drug delivery system for colorectal cancer (CRC) therapy using the lactic acid bacterium Pediococcus pentosaceus. It is equipped with dual gene cassettes driven by a strong inducible promoter that encode the therapeutic protein P8 fused to a secretion signal peptide and a complementation system. In an inducible CRC cell-derived xenograft mouse model, our synthetic probiotic significantly reduced tumor volume and inhibited tumor growth relative to the control. Mice with colitis-associated CRC induced by azoxymethane and dextran sodium sulfate exhibited polyp regression and recovered taxonomic diversity when the engineered bacterium was orally administered. Further, the synthetic probiotic modulated gut microbiota and alleviated the chemically induced dysbiosis. Correlation analysis demonstrated that specific bacterial taxa potentially associated with eubiosis or dysbiosis, such as Akkermansia or Turicibacter, have positive or negative relationships with other microbial members. Conclusions Taken together, our work illustrates that an effective and stable synthetic probiotic composed of P. pentosaceus and the P8 therapeutic protein can reduce CRC and contribute to rebiosis, and the validity and feasibility of cell-based designer biopharmaceuticals for both treating CRC and ameliorating impaired microbiota.
ObjectiveGastric cancer (GC) is a leading cause of cancer-related mortality. Although microbes besides Helicobacter pylori may also contribute to gastric carcinogenesis, wild-type germ-free (GF) mouse models investigating the role of human gastric microbiota in the process are not yet available. We aimed to evaluate the histopathological features of GF mouse stomachs transplanted with gastric microbiota from patients with different gastric disease states and their relationships with the microbiota.DesignMicrobiota profiles in corpus and antrum tissues and gastric fluid from 12 patients with gastric dysplasia or GC were analysed. Thereafter, biopsied corpus and antrum tissues and gastric fluid from patients (n=15 and n=12, respectively) with chronic superficial gastritis, intestinal metaplasia or GC were inoculated into 42 GF C57BL/6 mice. The gastric microbiota was analysed by amplicon sequencing. Histopathological features of mouse stomachs were analysed immunohistochemically at 1 month after inoculation. An independent set of an additional 15 GF mice was also analysed at 1 year.ResultsThe microbial community structures of patients with dysplasia or GC in the corpus and antrum were similar. The gastric microbiota from patients with intestinal metaplasia or GC selectively colonised the mouse stomachs and induced premalignant lesions: loss of parietal cells and increases in inflammation foci, in F4/80 and Ki-67 expression, and in CD44v9/GSII lectin expression. Marked dysplastic changes were noted at 1 year post inoculation.ConclusionMajor histopathological features of premalignant changes are reproducible in GF mice transplanted with gastric microbiota from patients with intestinal metaplasia or GC. Our results suggest that GF mice are useful for analysing the causality of associations reported in human gastric microbiome studies.
Background Aging is a natural process that an organism gradually loses its physical fitness and functionality. Great efforts have been made to understand and intervene in this deteriorating process. The gut microbiota affects host physiology, and dysbiosis of the microbial community often underlies the pathogenesis of host disorders. The commensal microbiota also changes with aging; however, the interplay between the microbiota and host aging remains largely unexplored. Here, we systematically examined the ameliorating effects of the gut microbiota derived from the young on the physiology and phenotypes of the aged. Results As the fecal microbiota was transplanted from young mice at 5 weeks after birth into 12-month-old ones, the thickness of the muscle fiber and grip strength were increased, and the water retention ability of the skin was enhanced with thickened stratum corneum. Muscle thickness was also marginally increased in 25-month-old mice after transferring the gut microbiota from the young. Bacteria enriched in 12-month-old mice that received the young-derived microbiota significantly correlated with the improved host fitness and altered gene expression. In the dermis of these mice, transcription of Dbn1 was most upregulated and DBN1-expressing cells increased twice. Dbn1-heterozygous mice exhibited impaired skin barrier function and hydration. Conclusions We revealed that the young-derived gut microbiota rejuvenates the physical fitness of the aged by altering the microbial composition of the gut and gene expression in muscle and skin. Dbn1, for the first time, was found to be induced by the young microbiota and to modulate skin hydration. Our results provide solid evidence that the gut microbiota from the young improves the vitality of the aged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.