An increase in the depolymerization of chitosan was found with an increased concentration of sodium perborate. Acetic anhydride was added to reacetylated chitosan in a molar ratio per gulcosamine unit, and the amide I band of IR spectra changed with the addition of acetic anhydride. Sixteen chitosans with various molecular weights (MWs) and degrees of deacetylation (DODs) were prepared. X-ray diffraction patterns indicated their amorphous and partially crystalline states. Increases in the chitosan MW and DOD increased the tensile strength (TS). TS of the chitosan films ranged from 22 to 61 MPa. However, the elongation (E) of chitosan films did not show any difference with MW. TS of chitosan films decreased with the reacetylation process. However, E of chitosan films was not dependent on DOD. The water vapor permeabilities (WVPs) of the chitosan films without a plasticizer were between 0.155 and 0.214 ng m/m 2 s Pa. As the chitosan MW increased, the chitosan film WVP increased, but the values were not significantly different. Moreover, the WVP values were not different from low DOD to high DOD.
Response surface methodology (RSM) was used for controlling molecular weight (MW) and degree of deacetylation (DOD) of chitosan in chemical processing. In a reduced model, MW of chitosan is y = 1736166.406 - 250.745X(1)X(2) - 265.452X(2)X(3), with R( 2) = 0.86, and DOD of chitosan is y = 30.6069 + 0.3396X(1) + 0.4948X(2) + 0.0094X(3)(2), with R( 2) = 0.89. MW of chitosan depends on the crossproduct of temperature and NaOH concentration and the crossproduct of NaOH concentration and time, and DOD depends linearly on temperature and NaOH concentration, and quadratically on time. Chitosan was widely depolymerized in a range from 1,100 kDa to 100 kDa and deacetylated from 67.3 to 95.7% by NaOH alkaline treatment. MW and DOD of chitosan were drastically decreased and increased, respectively, with increase of temperature, reaction time, and NaOH concentration. Furthermore, the rate of MW decrease and DOD increase of chitosan gradually decreased with prolonged reaction time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.