This study used a discrete-element analysis to predict the excavation performance of a 7.73 m-diameter earth pressure balance (EPB) shield tunnel boring machine (TBM). The simulation mainly predicted several excavation performance indicators for the machine, under different operating conditions. The number of particles in the chamber and the chamber pressure varied, as the operating conditions changed during the simulated TBM excavation. The results showed that the compressive force, torque, and driving power acting on the TBM cutterhead varied with its rotation speed, increasing as the cutterhead rotation speed rose. The overall compressive force acting on all of the disc cutters and their impact wear increased linearly as the cutterhead rotation accelerated. The position of a disc cutter on the cutterhead had a particularly strong influence, with higher compressive forces experienced by the cutters closer to the center. In contrast, the gauge disc cutters at the transition zone of the cutterhead showed more wear than those elsewhere. The muck discharge rate and the driving power of the screw conveyor rose with increasing screw conveyor and cutterhead rotation speeds. Finally, this study suggests optimal operation conditions, based on pressure balance and operational management of the TBM.
Thin Spray-on Liner (TSL) has been considered as a new rock support to replace shotcrete as well as wire mesh. However, the development of its original production technology is highly in demand since it is not open to the public. Therefore, two kinds of powder-type TSL prototypes were developed as the first development stage. Then, their mechanical properties were experimentally compared with those of a two-component foreign TSL material including both of liquid and powder components. From a series of experiments, the first TSL prototype mixing condition satisfied every TSL performance requirements specified by EFNRAC (2008), and showed much higher tensile and bond strengths than those of the two-component foreign TSL, even though the other TSL prototype cannot be used as a support member since its elongation at break is much lower than its corresponding EFNARC (2008) performance criterion. In addition, a further study to increase the ductility of the first TSL prototype might be necessary to guarantee its higher applicability to field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.