The potential estrogenic activities of bisphenol-A were investigated in vitro (E-screen and estrogen receptor competitive binding bioassays) and in vivo (uterotrophic assay). Uterotrophic responses were evaluated using mature ovariectomized Sprague-Dawley female rats treated subcutaneously with bisphenol A (1, 5, 10, 50, and 100 mg/kg/day), E2 (0.3 /kg), and DES (0.3 /kg) for 3 consecutive days. In a MCF-7 cell proliferation assay, E2 and DES used as positive estrogens induced maximum proliferation of MCF-7 cells at 1.0 nM, whereas BPA slightly induced MCF-7 cell proliferation at a higher level of 0.1 M and maximum proliferation at 10 M. In a competitive binding assay, E2 and DES showed inhibition of 17 -[ 3 H]estradiol binding to the rat uterus ER with an IC50 of 1.0 nM and 0.5 M, respectively. However, BPA had an IC50 of 5 M, which was approximately 5,000 or 10,000-fold greater than the IC50 of E2 and DES. In uterotrophic assays, uterus (wet and blotted) and vagina weights were significantly increased at the dose of BPA 100 mg/kg/day in OVX Sprague-Dawley rats. These studies demonstrate that BPA exhibits weak estrogenic activity in all experimental systems, and thus its migration from epoxy resins or polycarbonate products should be controlled not to exceed a safety levels for humans.
A physiologically based pharmacokinetic (PBPK) model consisting of vein, artery, lung, liver, spleen, kidneys, heart, testes, muscle, brain, adipose tissue, stomach, and small intestine was developed to predict the tissue distribution and blood pharmacokinetics of bisphenol A in rats and humans. To demonstrate the validity of the developed PBPK model, bisphenol A was administered to rats by multiple iv injections to steady state. The PBPK model predicted the steady-state levels of bisphenol A in blood and various tissues observed in rats after multiple iv injections. The PBPK model was further applied to predict blood and various tissue levels of bisphenol A in a 70 kg-human after single iv injection (5-mg dose) and multiple oral administrations to steady state (100-mg doses every 24 h). The simulated steady-state human blood levels (0.9-1.6 ng/ml) were comparable to basal blood levels of bisphenol A reported in literature (1.49 ng/ml). Furthermore, pharmacokinectic parameters of CL (116.6 L/h), Vss (141.8 L), and t1/2 (76.8 min) predicted for humans were comparable to those previously predicted by simple allometric scaling. This PBPK model may provide insights into the tissue distribution characteristics as a result of human exposure to bisphenol A.
This study reports the absolute oral bioavailability and mammary excretion of bisphenol A in rats. The oral bioavailability was determined after administration of relatively low iv (0.1 mg/kg) and oral (10 mg/kg) doses of bisphenol A to rats. After iv injection, serum levels of bisphenol A declined biexponentially, with the mean initial distribution and terminal elimination half-lives being 6.1 +/- 1.3 min and 52.5 +/- 2.4 min, respectively. The systemic clearance (Cls) and the steady-state volume of distribution (Vss) averaged 107.9 +/- 28.7 m/min/kg and 5.6 +/- 2.4 L/kg, respectively. Upon oral administration, the maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 14.7 +/- 10.9 ng/ml and 0.2 +/- 0.2 h, respectively. The apparent terminal elimination half-life of bisphenol A (21.3 +/- 7.4 h) after oral administration was significantly longer than that after iv injection, indicating the flip-flop of the absorption and elimination rates. The absolute oral bioavailability of bisphenol A was low (5.3 +/- 2.1%). To determine the extent of mammary excretion, bisphenol A was given by simultaneous iv bolus injection plus infusion to steady state at low, medium, and high doses. The steady-state serum levels of bisphenol A were linearly increased with higher dosing rates. The systemic clearance (mean range, 119.2-154.1 ml/min/kg) remained unaltered over the dosing rate studied. The levels of bisphenol A in milk exceeded those in serum, with the steady-state milk to serum concentration ratio being 2.4-2.7.
This study describes the maternal-fetal disposition of bisphenol A and its distribution into the placenta and amniotic fluid after iv injection (2 mg/kg) to pregnant Sprague-Dawley rats. Bisphenol A was distributed extensively to the placenta and fetus, with their respective AUC values 4.4- and 2.2-fold greater than AUC for the maternal serum. In contrast, the distribution of bisphenol A into the amniotic fluid was low, with the mean amniotic fluid-to-maternal serum AUC ratio of 0.2. The decay curves of bisphenol A in the placenta, fetus, and amniotic fluid paralleled that of the maternal serum during the terminal elimination phase. A five-compartment open model consisting of the maternal central, maternal peripheral, placental, fetal, and amniotic fluid compartments was used to describe the disposition of bisphenol A in pregnant rats, with the elimination occurring from the maternal central and fetal compartments. Based on this model, bisphenol A delivered to the placenta was transferred primarily to the fetus [kpf/(kpf + kpc + kpa) = 65.4 %], with the remaining fraction transported to the maternal central (33.2%) and amniotic fluid (1.4%) compartments. Bisphenol A was eliminated from the amniotic fluid by the fetal (63.9%) and placental (36.1%) routes. On the other hand, bisphenol A was eliminated from the fetus primarily by the placental route back to mother [kfp/(kfp + kfa + kfo) = 100%], with the amniotic route playing an insignificant role in fetal elimination. The percent contribution of the fetal elimination to the total elimination in the maternal-fetal unit was 0.0% [CLfoAUCfetus/(CLcoAUCmaternal serum + CLfoAUCfetus)]. The pharmacokinetic model used in this study provides insights into the routes of elimination of bisphenol A in the maternal-fetal rat upon maternal administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.