Hepcidin expression is induced by inflammatory molecules such as lipopolysaccharide (LPS) via a macrophage-mediated pathway. Although hepatocytes directly respond to LPS, the molecular mechanism underlying toll-like receptor (TLR)-dependent hepcidin expression by hepatocytes is mostly unknown. Here we show that LPS can directly induce the mRNA expression and secretion of hepcidin by hepatocytes via TLR4 activation. Using hepatocytes deficient in TLR4, myeloid differentiation factor 88 (MyD88) and TIR domain-containing adaptor inducing interferon-β (TRIF), we demonstrated that LPS-induced hepcidin expression by hepatocytes is regulated by its specific receptor, TLR4, via a MyD88-dependent signaling pathway. Hepcidin promoter activity was significantly increased by MyD88-dependent downstream signaling molecules (interleukin-1 receptor-associated kinase (IRAK) and tumor necrosis factor receptor-associated factor 6 (TRAF6), which activate c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1). We then confirmed that LPS stimulation induced the phosphorylation of JNK and c-Jun, and observed strong occupancy of the hepcidin promoter by c-Jun. Promoter mutation analysis also identified the AP-1-binding site on the hepcidin promoter. Finally, bone marrow transplantation between wild-type and TLR4 knockout mice revealed that hepatic TLR4-dependent hepcidin expression was comparable to macrophage TLR4-dependent hepcidin expression induced by LPS. Taken together, these results suggest that TLR4 expressed by hepatocytes regulates hepcidin expression via the IRAK–TRAF6–JNK–AP-1 axis.
ASC-2 is a recently isolated transcriptional cointegrator molecule, which is amplified in human cancers and stimulates transactivation by nuclear receptors, AP-1, nuclear factor kappaB (NFkappaB), serum response factor (SRF), and numerous other transcription factors. ASC-2 contained two nuclear receptor-interaction domains, both of which are dependent on the integrity of their core LXXLL sequences. Surprisingly, the C-terminal LXXLL motif specifically interacted with oxysterol receptor LXRss, whereas the N-terminal motif bound a broad range of nuclear receptors. These interactions appeared to be essential because a specific subregion of ASC-2 including the N- or C-terminal LXXLL motif acted as a potent dominant negative mutant with transactivation by appropriate nuclear receptors. In addition, the autonomous transactivation domain (AD) of ASC-2 was found to consist of three separable subregions; i.e. AD1, AD2, and AD3. In particular, AD2 and AD3 were binding sites for CREB binding protein (CBP), and CBP-neutralizing E1A repressed the autonomous transactivation function of ASC-2. Furthermore, the receptor transactivation was not enhanced by ASC-2 in the presence of E1A and significantly impaired by overexpressed AD2. From these results, we concluded that ASC-2 directly binds to nuclear receptors and recruits CBP to mediate the nuclear receptor transactivation in vivo.
Nuclear receptors regulate transcription by binding to specific DNA response elements as homodimers or heterodimers with the retinoid X receptors (RXRs). The identity box (I-box), a 40-amino acid region within the ligand-binding domains of RXRs and other nuclear receptors, was recently shown to determine identity in the heterodimeric interactions. Here, we dissected this region in the yeast two-hybrid system by analyzing a series of chimeric receptors between human RXRalpha and rat hepatocyte nuclear factor 4 (HNF4), a distinct member of the nuclear receptor superfamily that prefers homodimerization. We found that the C-terminal 11-amino acid region of the RXR I-box was sufficient to direct chimeric receptors based on the HNF4 ligand-binding domain to heterodimerize with retinoic acid receptors or thyroid hormone receptors. Furthermore, we identified the hRXRalpha amino acids A416 and R421 of the 11-amino acid subregion as most critical determinants of heterodimeric interactions; i.e. mutant HNF4s incorporating only the hRXRalpha A416 or R421 heterodimerized with retinoic acid receptor.
Higher vertebrates have evolved innate and adaptive immune systems to defend against foreign substances and pathogens. Sophisticated regulatory circuits are needed to avoid inappropriate immune responses and inflammation. GPR108 is a seven-transmembrane family protein that activates NF-κB strongly when overexpressed. Surprisingly, its action in a physiological context is that of an antagonist of Toll-like receptor (TLR)-mediated signaling. Cells from Gpr108-null mice exhibit enhanced cytokine secretion and NF-κB and IRF3 signaling, whereas Gpr108-null macrophages reconstituted with GPR108 exhibit blunted signaling. Co-expression of TLRs and GPR108 reduces NF-κB and IFNβ promoter activation compared to expression of either TLRs or GPR108 alone. Upon TLR stimulation GPR108 abundance increases and the protein engages TLRs and their partners to reduce MyD88 expression and interfere with its binding to TLR4 through blocking MyD88 ubiquitination. In turn GPR108 is antagonized by TIRAP, an adaptor protein for TLR and MyD88. The interrelationships between GPR108 and innate immune signaling components are multifactorial and point to a membrane-associated signaling structure of significant complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.