An ordered mesoporous WO(3-X) with high electrical conductivity (m-WO(3-X)) was prepared and evaluated as an anode material for lithium ion batteries (LIBs). Ordered mesoporous tungsten trioxide (m-WO(3)) with an identical pore structure to that of m-WO(3-X) and bulk WO(3-X) (b-WO(3-X)) was prepared for the comparison purpose. An m-WO(3-X) electrode exhibited a high reversible capacity (748 mAh g(-1), 6.5 Li/W) and a high volumetric capacity (∼1500 mAh cm(-3)), which is comparable to the Li metal itself (ca. 2000 mAh cm(-3)). Also, an improved rate capability and a good cyclability were observed in the m-WO(3-X) electrode when compared with m-WO(3) and b-WO(3-X) electrodes. From electrochemical impedance spectroscopy (EIS) analysis, the advanced anode performance of the m-WO(3-X) electrode was probably attributed to large ordered mesopores and a high electrical conductivity. Differential scanning calorimetry (DSC) result displayed that the safety of m-WO(3-X) was more improved than those of graphite and Si anode materials.
Palladium particles supported on porous carbon of 20 and 50 nm pore diameters were prepared and applied to the direct formic acid fuel cell (DFAFC). Four different anode catalysts with Pd loading of 30 and 50 wt% were synthesized by using impregnation method and the cell performance was investigated with changing experimental variables such as anode catalyst loading, formic acid concentration, operating temperature and oxidation gas. The BET surface areas of 20 nm, 30 wt% and 20 nm, 50 wt% Pd/porous carbon anode catalysts were 135 and 90 m 2 /g, respectively. The electro-oxidation of formic acid was examined in terms of cell power density. Based on the same amount of palladium loading with 1.2 or 2 mg/cm 2 , the porous carbon-supported palladium catalysts showed higher cell performance than unsupported palladium catalysts. The 20 nm, 50 wt% Pd/porous carbon anode catalyst generated the highest maximum power density of 75.8 mW/cm 2 at 25 o C. Also, the Pd/porous carbon anode catalyst showed less deactivation at the high formic acid concentrations. When the formic acid concentration was increased from 3 to 9 M, the maximum power density was decreased from 75.8 to 40.7 mW/cm 2 at 25 o C. Due to the high activity of Pd/porous carbon catalyst, the cell operating temperature has less effect on DFAFC performance.
The oxidation of formic acid by the palladium catalysts supported on carbon with high surface area was investigated. Pd/C catalysts were prepared by using the impregnation method. 30 wt% and 50 wt% Pd/C catalysts had a high BET surface area of 123.7 m 2 /g and 89.9 m 2 /g, respectively. The fuel cell performance was investigated by changing various parameters such as anode catalyst types, oxidation gases and operating temperature. Pd/C anode catalysts had a significant effect on the direct formic acid fuel cell (DFAFC) performance. DFAFC with Pd/C anode catalyst showed high open circuit potential (OCP) of about 0.84 V and high power density at room temperature. The fuel cell with 50 wt% Pd/C anode catalyst using air as an oxidant showed the maximum power density of 99 mW/cm 2 . On the other hand, a fuel cell with 50 wt% Pd/C anode catalyst using oxygen as an oxidant showed a maximum power density of 163 mW/cm 2 and the maximum current density of 590 mA/cm 2 at 60 o C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.