Platinum-ion-doped TiO2 (Pt(ion)-TiO2) was synthesized by a sol-gel method, and its visible light photocatalytic activities were successfully demonstrated for the oxidative and reductive degradation of chlorinated organic compounds. Pt(ion)-TiO2 exhibited a yellow-brown color, and its band gap was lower than that of undoped TiO2 by about 0.2 eV. The flat band potential of Pt(ion)-TiO2 was positively shifted by 50 mV compared with that of undoped TiO2. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy analyses showed that the Pt ions substituted in the TiO2 lattice were present mainly in the Pt(IV) state with some Pt(II) on the sample surface. Pt(ion)-TiO2 exhibited higher photocatalytic activities than undoped TiO2 under UV irradiation as well. The visible light activity of Pt(ion)-TiO2 was strongly affected by the calcination temperature and the concentration of Pt ion dopant, which were optimal at 673 K and 0.5 atom %, respectively. Under visible irradiation, Pt(ion)-TiO2 degraded dichloroacetate and 4-chlorophenol through an oxidative path and trichloroacetate via a reductive path. The activity of Pt(ion)-TiO2 was not reduced when used repeatedly under visible light. However, visible-light-illuminated Pt(ion)-TiO2 could not degrade substrates such as tetramethylammonium and trichloroethylene, which are degraded with UV-illuminated TiO2. The characteristics and reactivities of Pt(ion)-TiO2 as a new visible light photocatalyst were investigated in various ways and discussed in detail.
The development of a high-efficiency TiO 2 photocatalyst is of great importance to a variety of solar light conversion and application fields; the desired high efficiency can be achieved by employing well-controlled TiO 2 nanoarchitectures. In this study, we have successfully synthesized well-ordered and aligned high surface area mesoporous TiO 2 nanofibers (TiO 2 -NF) by electrospinning of TiO 2 powder dispersed in viscous polymer solution and subsequent calcination. For comparison, TiO 2 nanoparticles (TiO 2 -NP) are also prepared from calcination of the same TiO 2 powder. The TiO 2 -NF of ca. 500 nm in diameter and a few micrometers in length consist of compactly and densely packed spherical nanoparticles of ca. 20 nm in size and have mesopores of 3-4 nm in radius. Photocatalytic comparison between TiO 2 -NF and TiO 2 -NP indicated that the former had far higher photocatalytic activities in photocurrent generation by a factor of 3 and higher hydrogen production by a factor of 7. The photocatalytic superiority of TiO 2 -NF is attributed to effects of mesoporosity and nanoparticle alignment, which could cause efficient charge separation through interparticle charge transfer along the nanofiber framework. Finally, various surface characterization experiments were conducted and included to understand the photocatalytic behaviors of TiO 2 -NF and TiO 2 -NP.
The visible-light-induced degradation reaction of 4-chlorophenol (4-CP) was investigated in aqueous suspension of pure TiO2. Contrary to common expectations, 4-CP could be degraded under visible illumination (lambda > 420 nm), generating chlorides and CO2 concomitantly. The observed visible reactivity was not due to the presence of trace UV light since the visible-light-induced reactions exhibited behaviors distinguished from those of UV-induced reactions. Dichloroacetate could not be degraded under visible light, whereas it degraded with a much faster rate than 4-CP under UV irradiation. The addition of tert-butyl alcohol, a common OH radical scavenger, did not affect the visible reactivity of 4-CP, which indicates that OH radicals are not involved. Other phenolic compounds such as phenol and 2,4-dichlorophenol were similarly degraded under visible light. The surface complexation between phenolic compounds and TiO2 appears to be responsible for the visible light reactivity. Diffuse reflectance UV-vis spectra showed that 4-CP adsorbed on TiO2 powder induced visible light absorption. The visible light reactivity among several TiO2 samples was apparently correlated with the surface area of TiO2. The visible-light-induced photocurrents on a TiO2 electrode could be obtained only in the presence of 4-CP. It is proposed that a direct electron transfer from surface-complexed phenol to the conduction band of TiO2 upon absorbing visible light (through ligand-to-metal charge transfer) initiates the oxidative degradation of phenolic compounds. When the surface complex formation was hindered by surface fluorination, surface platinization, and high pH, the visible-light-induced degradation of 4-CP was inhibited. The evidence of visible-light-induced reactions and the experimental conditions affecting the visible reactivity were discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.