We report the first demonstration of Raman amplification in a fiber of a single Bessel-like higher order mode using a multimode pump source. We amplify the LP-mode with a 559-µm effective mode area at a signal wavelength of 1115 nm in a pure-silica-core step-index fiber. A maximum of 18 dB average power gain is achieved in a 9-m long gain fiber, with output pulse energy of 115 µJ. The Raman pump source comprises a pulsed 1060 nm ytterbium-doped fiber amplifier with V-value ~30, which is matched to the Raman gain fiber. The pump depletion as averaged over the signal pulses reaches 36.7%. The conversion of power from the multimode pump into the signal mode demonstrates the potential for efficient brightness enhancement with low amplification-induced signal mode purity degradation.
We demonstrate a fiber Raman laser directly pumped by two spectrally combined multimode diode lasers at ~950 nm and ~976 nm. The emission wavelength becomes 1020 nm, which corresponds to the 1 st Stokes of 976 nm. The pump separation of 270 cm-1 is both much smaller than the Raman peak shift of 440 cm-1 and much larger than the Raman linewidth of around 100 cm-1 , which is unfavorable for efficient Raman conversion. Nevertheless, the addition of the pump at 950 nm triples the output power compared to pumping only at 976 nm. We reach 23 W of output power with slope efficiency of 51% and beam quality M 2 of 5.2 in a germanosilicate graded-index fiber.
We numerically simulate and optimize a high-power fiber Raman amplifier cladding pumped by spectrally combined diode lasers at wavelengths from ∼0.9 to ∼1 μm in the continuous-wave regime. This amplified a signal at the first-Stokes wavelength of 1024 nm. We found that it was possible to add pumps over an increasingly wide wavelength span up to ∼90 nm, while still maintaining an incremental conversion efficiency higher than 60%, even though the Raman linewidth is only ∼15 nm. We investigated the dependence on the power of individual diode lasers and on the wavelength spacing and found that the total conversion efficiency reaches ∼70% with realistic pump sources based on state-of-the-art diode lasers. We believe this study shows the potential for high-power fiber Raman lasers pumped by spectrally combined multiwavelength diode and fiber laser sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.