We report a molecular-dynamics study of flow of Lennard-Jones fluid through a nanochannel where size effects predominate. The momentum and energy accommodation coefficients, which determine the amount of slip and temperature jumps, are calculated for a three-dimensional Poiseuille flow through a nano-sized channel. Accommodation coefficients are calculated by considering a " gravity"- (acceleration field) driven Poiseuille flow between two infinite parallel walls that are maintained at a fixed temperature. The Knudsen number (Kn) dependency of the accommodation coefficients, slip length, and velocity profiles is investigated. The system is also studied by varying the strength of gravity. The accommodation coefficients are found to approach a limiting value with an increase in gravity and Kn. For low values of Kn (<0.15), the slip length obtained from the velocity profiles is found to match closely the results obtained from the linear slip model. Using the calculated values of accommodation coefficients, the first- and second-order slip models are validated in the early transition regime. The study demonstrates the applicability of the Navier-Stokes equation with the second-order slip model in the early transition regime.
The mean free path of rarefied gases is accurately determined using Molecular Dynamics simulations. The simulations are carried out on isothermal argon gas (Lennard-Jones fluid) over a range of rarefaction levels under various confinements (unbounded gas, parallel reflective wall and explicit solid platinum wall bounded gas) in a nanoscale domain. The system is also analyzed independently in constitutive sub-systems to calculate the corresponding local mean free paths. Our studies which predominate in the transition regime substantiate the boundary limiting effect on mean free paths owing to the sharp diminution in molecular free paths near the planar boundaries. These studies provide insight to the transport phenomena of rarefied gases through nanochannels which have established their potential in microscale and nanoscale heat transfer applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.