Connect Component Labeling (CCL) has been a fundamental operation in Computer Vision for decades. Most of the literature deals with 2D algorithms for applications like video surveillance or autonomous driving. Nonetheless, the need for 3D algorithms is rising, notably for medical imaging. While 2D CCL algorithms already generate large amounts of memory accesses and comparisons, 3D ones are even worse. This is the curse of dimensionality. Designing an efficient algorithm should address this problem. This paper introduces a segment-based algorithm for 3D labeling that uses a new strategy to accelerate label equivalence processing to mitigate the impact of higher dimensions. We claim that this new algorithm outperforms State-of-the-Art algorithms by a factor from ×1.5 up to ×3.1 for usual medical datasets and random images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.