It is important for researchers and policy-makers to frequently update the amount and spatial distribution of impervious surface area (ISA) on earth, because the level of imperviousness not only indicates urbanization, but is also a key indicator of ecological conditions. In this study, we developed an easily implemented method for estimating the ISA percentage (ISA%) from vegetation index data obtained from a moderate resolution imaging spectroradiometer (MODIS) and nighttime light data obtained from the Defense Meteorological Satellite Program's Operational Line-scan System (DMSP-OLS). The proposed method consists of four major steps. First, a non-vegetation fraction map was generated from 16-day composited time-series MODIS normalized difference vegetation index data using the temporal mixture analysis method. Second, the enhanced-vegetation-index-adjusted nighttime light index (EANTLI) was used to overcome the saturation problem and blooming effects in the original DMSP-OLS data. Third, the relationship between ISA% and EANTLI was derived based on a statistical analysis of the non-vegetation fraction image and the EANTLI image to obtain a preliminary ISA% map. Finally, the final ISA% map was obtained by selecting smaller values from the preliminary ISA% map and non-vegetation fraction map for each pixel. The validation results showed that the developed method has promising accuracy for estimating the ISA% in our study area (mainly consisting of four Southeast Asian countries: Thailand, Laos, Cambodia, and Vietnam), with a root mean square error value of 0.111, a systematic error value of 0.061, and a determination coefficient of 0.87. Another important finding is that there are two relationships between ISA% and improved nighttime light (i.e., EANTLI): the natural logarithmic function is suitable for ISA% values between 0% and 50%, and the quadratic 3 polynomial function should be used for ISA% values larger than 50%. The developed method has high potential for application to the generation of global ISA% maps with frequent updates due to its easy implementation and the ready availability of input data.
Soil erosion causes land degradation which negatively impacts not only natural resources but also livelihoods of people due to low agricultural productivity. Cambodia is prone to soil erosion due to poor agricultural practices. In this research we use Battambang province as a case study to quantify impact of land use and land cover change (LULC) on soil erosion. This study assessed the impact from LULC changes to soil erosion. LULC change maps were analyzed based on Landsat satellite imagery of 1998, 2008, and 2018, computed in QGIS 6.2.9, while the soil erosion loss was estimated by the integration of remote sensing, GIS tools, and Revised Universal Soil Loss Equation (RUSLE) model. The results showed that the area of agricultural land of Battambang province significantly increased from 44.50% in 1998 to 61.11% in 2008 and 68.40% in 2018. The forest cover significantly decreased from 29.82% in 1998 to 6.18% in 2018. Various soil erosion factors were estimated using LULC and slope. Based on that, the mean soil loss was 2.92 t/ha.yr in 1998, 4.20 t/ha.yr in 2008, and 4.98 t/ha.yr in 2018. Whereas the total annual soil loss was 3.49 million tons in 1998, 5.03 million tons in 2008, and 5.93 million tons in 2018. The annual soil loss at the agricultural land dramatically increased from 190,9347.9 tons (54%) in 1998 to 3,543,659 tons (70.43%) in 2008 and to 4,267,439 tons (71.91%) in 2018 due to agricultural land expansion and agricultural practices. These losses were directly correlated with LULC, especially agricultural land expansion and forest cover decline. Our results highlight the need to develop appropriate land use and crop management practices to decrease land degradation and soil erosion. These data are useful to bring about public awareness of land degradation and alert local citizens, researchers, policy makers, and actors towards land rehabilitation to bring the area of land back to a state which is safe for increasing biodiversity and agricultural productivity. Measures to reduce or prevent soil erosion and the use of conservation agriculture practices, along with water and soil conservation, management, agroforestry practices, vegetation cover restoration, the creation of slope terraces, and the use of direct sowing mulch-based cropping systems should be considered.
The main objective of this research was to evaluate land use and land cover (LULC) change in Battambang province of Cambodia over the last two decades. The LULC maps for 1998, 2003, 2008, 2013 and 2018 were produced from Landsat satellite imagery using the supervised classification technique with the maximum likelihood algorithm. Each map consisted of seven LULC classes: built-up area, water feature, grassland, shrubland, agricultural land, barren land and forest cover. The overall accuracies of the LULC maps were 93%, 82%, 94%, 93% and 83% for 1998, 2003, 2008, 2013 and 2018, respectively. The LULC change results showed a significant increase in agricultural land, and a large decrease in forest cover. Most of the changes in both LULC types occurred during 2003–2008. Overall, agricultural land, shrubland, water features, built-up areas and barren land increased by 287,600 hectares, 58,600 hectares, 8300 hectares, 4600 hectares and 1300 hectares, respectively, while forest cover and grassland decreased by 284,500 hectares and 76,000 hectares respectively. The rate of LULC changes in the upland areas were higher than those in the lowland areas of the province. The main drivers of LULC change identified over the period of study were policy, legal framework and projects to improve economy, population growth, infrastructure development, economic growth, rising land prices, and climate and environmental change. Landmine clearance projects and land concessions resulted in a transition from forest cover and shrubland to agricultural land. Population and economic growth not only resulted in an increase of built-up area, but also led to increasing demand for agricultural land and rising land prices, which triggered the changes of other LULC types. This research provides a long-term and detailed analysis of LULC change together with its drivers, which is useful for decision-makers to make and implement better policies for sustainable land management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.