The COVID-19 pandemic has highlighted the need for improved airborne infectious disease monitoring capability. A key challenge is to develop a technology that captures pathogens for identification from ambient air. While pathogenic species vary significantly in size and shape, for effective airborne pathogen detection the target species must be selectively captured from aerosolized droplets. Captured pathogens must then be separated from the remaining aerosolized droplet content and characterized in real-time. While improvements have been made with clinical laboratory automated sorting in culture media based on morphological characteristics of cells, this application has not extended to aerosol samples containing bacteria, viruses, spores, or prions. This manuscript presents a strategy and a model for the development of an airborne pandemic early warning system using aerosol sampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.