MXene (M n+1 X n ) is an emerging class of layered two-dimensional (2D) materials, which are derived from their bulk-state MAX phase (M n+1 AX n , where M: early transition metal, A: group element 13 and 14, and X: carbon and/or nitrogen). MXenes have found wide-ranging applications in energy storage devices, sensors, catalysis, etc. owing to their high electronic conductivity and wide range of optical absorption. However, the absence of semiconducting MXenes has limited their applications related to light emission. Research has shown that quantum dots (QDs) derived from MXene (MQDs) not only retain the properties of the parent MXene but also demonstrate significant improvement on light emission and quantum yield (QY). The optical properties and photoluminescence (PL) emission mechanisms of these light-emitting MQDs have not been comprehensively investigated. Recently, work on light-emitting MQDs has shown good progress, and MQDs exhibiting multi-color PL emission along with high QY have been fabricated. The synthesis methods also play a vital role in determining the light emission properties of these MQDs. This review provides an overview of light-emitting MQDs and their synthesis methods, optical properties, and applications in various optical, sensory, and imaging devices. The future prospects of light-emitting MQDs are also discussed to provide an insight that helps to further advance the progress on MQDs.
Being located in the Sun Belt, Pakistan is rich in sunlight and receives a high mean irradiation. This condition is ideal for harnessing Sun’s power for solar energy applications by using solar reflectors. In spite of possessing such a rich solar irradiation area, Pakistan is facing energy crisis because most of the energy resources are still unexploited. This paper discusses the energy crisis of Pakistan and provides the solution by putting efforts into solar energy technology, as well as devising innovative ways to incorporate solar reflectors into a solar panel and get more power generation out of it by a diminutive modification. Reflectors are used in the solar technology to concentrate the sunlight onto the solar panels. They employ glass as a base material with a silver coating and a protective layer over it. They elevate the energy input of solar panels as the whole solar spectrum is reflected on them. Materials with more reflective properties are needed to be used to increase the reflectivity and efficiency of solar reflectors. In Pakistan, no significant work is done till now towards the development of solar reflectors. If solar reflectors are used with the solar panels, then their efficiency as well as production from the solar panels will be maximized.
In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li + ) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.
MXene-based quantum dots (MQDs), which are obtained by fragmenting MXenes into a nano-meter scale, can display photoluminescence (PL), suggesting light-emitting applications for bandgap-less MXenes. However, despite the diverse possible formations...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.