The latency of neural ranking models at query time is largely dependent on the architecture and deliberate choices by their designers to trade-off effectiveness for higher efficiency. This focus on low query latency of a rising number of efficient ranking architectures make them feasible for production deployment. In machine learning an increasingly common approach to close the effectiveness gap of more efficient models is to apply knowledge distillation from a large teacher model to a smaller student model. We find that different ranking architectures tend to produce output scores in different magnitudes. Based on this finding, we propose a cross-architecture training procedure with a margin focused loss (Margin-MSE), that adapts knowledge distillation to the varying score output distributions of different BERT and non-BERT ranking architectures. We apply the teachable information as additional fine-grained labels to existing training triples of the MSMARCO-Passage collection. We evaluate our procedure of distilling knowledge from state-of-the-art concatenated BERT models to four different efficient architectures (TK, ColBERT, PreTT, and a BERT CLS dot product model). We show that across our evaluated architectures our Margin-MSE knowledge distillation significantly improves their effectiveness without compromising their efficiency. To benefit the community, we publish the costly teacher-score training files in a ready-to-use package.
In this paper, we present our approaches for the case law retrieval and the legal case entailment task in the Competition on Legal Information Extraction/Entailment (COLIEE) 2021. As first stage retrieval methods combined with neural re-ranking methods using contextualized language models like BERT [5] achieved great performance improvements for information retrieval in the web and news domain, we evaluate these methods for the legal domain. A distinct characteristic of legal case retrieval is that the query case and case description in the corpus tend to be long documents and therefore exceed the input length of BERT. We address this challenge by combining lexical and dense retrieval methods on the paragraph-level of the cases for the first stage retrieval. Here we demonstrate that the retrieval on the paragraph-level outperforms the retrieval on the document-level. Furthermore the experiments suggest that dense retrieval methods outperform lexical retrieval. For re-ranking we address the problem of long documents by summarizing the cases and fine-tuning a BERT-based re-ranker with the summaries. Overall, our best results were obtained with a combination of BM25 and dense passage retrieval using domain-specific embeddings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.